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AUTHOR’S NOTE

Bowmm corrections and improvements have been made at the
sgestion of correspondents, whom T sineevely thank, in
pacticuiar, I am very grateful to Professor A. Oppenheéim, o0
the University of Malaya, for pointing out a method of, cbil-
stecting a function which has a given real or imaginag¥ pars
(. 531-53), O
oL G
riny Marv UoLLEaws "G
{University of London) '\"
Mareh, 1953 N\
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PREFACE TO THE FJIRST EDITION

Tt book is intended to give an, inttoductory account of the
{aacinating subject ‘iﬁf‘”‘ﬁﬂg"%ﬁﬁﬁ%o{:&ffabh and conformal
transformation, with some.Mndication of applications to
problems of mathematical Jdhysics, aeronautics, and slectricul
sngineering. It demands\from the reader little more in the
way of preliminary eghipment than some knowledge of the
caiculus (including@rtial differentiation) and analytical plane
geometry, \

The needs efifhose reading Pure Mathematics for the General
and Special, Honours degrees in Arts and Science of the Uni-
versity of<Eeéndon are practically covered by Chapters I-TIT,
while s¢ presenting Advanced Subjects should be helped
by Chapters I-VII. Candidates in Mathematics at the B.Se.
(Engd) will need Chapters I-IIT and at least part of Chapters

\TIV: and V.

The electrical engineer may read Chapter VIIL, on the use of
the complex variable in alternating current problems, im-
mediately after Chapters I and II.

Thanks are due to the University of London for permitting
the inclusion among the exercises of questions set at examina-
tions for Pass, General and Special Honours degrees in Arts,
Science and Engineecring.
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CHAPTER 1
COMPLEX NUMBERS AND THEIR REPRESENTATION

Graphical Representation of Real Numbezs\™ One way of
representing the real numbers graphically\js’ to make unse of
POINLE On & straight line X'0X, produged’ indefinitely far in
A directions (Fig. 1). Taking anyixed pont O on the line
G represent zero and choosing a suithble unit of length, we
MLy represent a positive numbep g *by a poiut P, on the line
ant to the right of Ov \ﬁﬁ’cﬂbfﬁlé%bﬁ o

&
SRF .
P? 18 units long, and a

xz .s“ ‘ JC}
— —_———
;xz '{n’ ! l.q:f
X’ 2 ) A X
J:,d—‘isz
> . .
\135 7 3 D
:‘\ Fig. 1

&«
&

\"
nepdtive number 2, by a point P, to the left of O such that

§ Is — &, units long. For example, the number (— 3} is
represented Ly a point on the left of 0 and 3 units distant
from it. Then, to every real number, positive or negative,
there corresponds one and only one point on she ling and,
conversely, to every point on the line there corresponds one
and only one real number.

Another method is 4o represent the number by a displacement
along. the line, the positive number z, being represented by a
displacement of %y units from left to right, and the negative

1



2 THE COMPLEX VARIABLE

number x, being represented by a displacement of — x, units
from right to left. Thus the number ( — 3) is represented by
& displacement of 3 units from right to left.

The second method leads us to the idea of representing arvy
real number 2 by a vector, either parallel to or lying in the line,
the sense of the vector being from left to right for a positiva
number and from right to left for a negative number. The
number of units of length of the vector is + & according s
z i8 positive or negative. We shall denote by [«] the ¥ectar
which represents x in this way. The modulus of £ i defined
to be the number of units of length of the veector a.nd 18 denoted
by |2|: this number is essentially positive. (N

Clearly, the vectors {z] and {— ] differin gense but nod
in length, and so |z| = | — =], AN\

To represent the sum and differense of two real numbers
#, (positive) and z, (negative), draw.f{hé vector 4B = [x,] and
the vectors BC = [x,) and BD = L&), Then AC = [ + Zs)
and AD = [z, - 2,] (Fig. 1). Here 4B denotes the vector
joining 4, B in the gense from A to B.

®

The product x,2, apd themupeher o1 have the satne or opposits
: AL R g e PP
gigns a,cco:rdmgwas:g!:t:a 5 aﬁ‘oﬁtwe or %:ig&tive. Hence the vecters

[2%5] and [z,] have the‘same sense if %, i8 positive, but ure

opposite in sense if'w, is negative. The modulus of Xy, 19

obvigualy equal tobhe product of the moduli of z, and z,, that is
& ] = ) x Ja)

In partichlir, the effect of multiplying a number x by — 1 is
to reverselthe direction of the vector [z] without altering its
lengthy We may therefore think of multiplication by — 1 as
argj“;eration which rotates a vector through two right angles.
(Purely Imaginary Numbexs. Consider the quadratic equation

2@+ 1 = 0. No real value of z can satisfy the equation, for the

) square of a real number cannot be negative. If, then, the

\J ¢quation is satisfied when 2 = 1, the number ¢ cannot he real.
We define i as the imaginary wnit.

We shall assume that ¢ obeys the laws of ordinary algebra;
so that the equation may be written in the form

2% 32 =0 or {z—1) (z +4) =0,
whence it is seen that the equation is also satisfied when

z2=—1. It follows that, if n iz real, the equation 22 1 52 — ¢
18 gatisfied by z = + ni. -



COMPLEX NUMBERS AND THEIR REPRESENTATION 3

A number of the form #¢, where # is real, is called a purely
imaginary number.

In introduecing & new Lind of mumber in this Wway we are
following the precedent of the introduction of negative and
fractional numbers in arithmetic, which were found to he
necessary when the processes of subtraction and division were
appiied to the so-called natural numbers (positive integers). ~

¥or the graphical representation of the purely imaginary
suimbers we shall adops methods which are exactly analogous
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to thosd, already used for the real numbpers, On an axis Y'OF,
perpgéndicular to X'OX, represent #ht (wWhere y, is positive) by
S\Pc)iilt @1, above O such that 0Q, is % units long, and represent
yst (where y, is negative) by @, below O such that 0@, is — y,

units in length (Fig. 2).

The vector idea may also be used, and then the number i
i3 represented by a vector [7¢], either m or parallel to the line
Y'0Y, of length -~ y units according as y is positive or negative,
the sense being upwards if ¥ s positive and downwards if i
is negative. The length of the vector is called the modulus of yi
and is denoted by |yi[. It follows that lyil = |yl
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4 THE COMPLEX VARIABLE

The imaginary unit ¢ will then be represented by a unit
vector in the positive sense.

If P is the point on X'0OX which represents the real number
n, and if ¢, on Y'OY, represents ni, the vectors OP == [n]
and 0@ = [ni] are equal in length and perpendicular in direc-
tion. The veetor [n{] could be obtained by rotating the vector
in] through a right angle in the counter-clockwise sense, and
this suggests that multiplication by ¢ may be representediby
the operation of turning a vector through a right angle. \This
is readily verified, for, if P’ and @’ represent — n afndh— n1,
respectively, 'S\

OF ={—n]= [ni x i] and OQ' = [— nil.i:"’{s—: n X il

In Fig. 2 it has heen assumed that » is pofifive; the reader
can easily verify that the result holds gogd'when # is negative.

Similarly, it may be shown that mugiplication by — ¢ is
equivalent to rotation of the vectop fhrough a right angle in
the clockwise sense. \

It follows that multiplicationhy % or (— 4)? is equivalent
to rotation through two rightsangles in either sense, which, as
we have alrcadywseendlisaibefiachre imultiplication by — 1.

Vectorial representationi8 thus consistent with the definition
of ¢, viz. 1# = — 1; for'multiplication twice by 7 is equivalent
to multiplication by, _

Complex Numpers: The roots of the general quadratic
equation L\

a4+ b2 + ¢ = 0,

where a,cb,°¢, are real numbers, are §— b & /(62— dac) {[2a.
If the disériminant b2 — 4ac is positive or zero, these are real
numxb‘lé}s' and are of no particular interest, but, if the dis-
criifihant is negative, the roots are not real numbers. In this
Jfase, we can find & real number n such that 52 — dge — - 4a2n?

Oand, if we write — bf2¢ = m, the roots are m 4+ in. Such

numbers are said to be complex. :

We shall take x + iy to be the general complex number,
@ and y being real: x is defined as the rea] part and y as the
wmaginary part of the number.

It should be noted that the imaginary part of the number
is itself real and is the coefficient of the i'inagjnary unit ¢ in
the expression = - iy,

Parely real and purely imaginary numbers may be regarded
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apecial classes of the more general complex numbers, the
er having zers for the imaginary part and the latter having
for the real part. ¥or zero, hoth real and imaginary parts

4 iy =0, then ¥ =y =0; otherwise the imagin-
anit would be equal to — @fy. which is a real number, and

is impossible. Tt follows that two complex nembers
vbich are equal are identical ; for, if + iy == 2’ 4 4y’, then'

Y \\\
£\
i Piz) («
PT’LZ) K7, N\
o~
8
d \3
x ' x.\».o
I p%¢
Fi W
/s ACNS)
XN ¥ 0\ T M X

AN _
www . raul{i}:&réry.org.ln
o 3

ad
N -

P4\

"‘\
W 2\J
P2
N
(& a) + a(gl"y’) = 0, and from the above, we have z == 2’
snd g = ¢
The corr}plex numbers x 4 iy, x — 1y, which have the same
real pafts and equal and opposite imaginary parts, are said to
be~chrjugate. Their sum (2x) is real, their difference (2¢y)
1s'gurely imaginary, and their product
(@ o+ i) (1 — iy) = 2% — (iy)? = a2 | y2
caunot be negative. The product would be zero only when
% =y == 0. The conjugate of z is written %,
It will be observed that the roots of the above quadratic are
conjugate complex nurabers when the discriminant is negative.

The Argand Diagram. In the plane of the perpendicular
axes X'0X, Y'OY (Fig. 3), plot the point P whose Cartesian

Frs. §




6 THE CCMPLEX VARIABLE

co-ordinates referred to these axes are (x, y). Then we can take
this point to represent the complex number x - iy, There is
thus one and only one point in the plane which corresponds to
the number. If we sze given any point in the plane, we can
find its co-ordinates (%, y) and hence construct the corresponding
number # -} 4y. This number is called the affiz of the point.

The diagram in which this representation is carried out is
cailed the drgand diagram, A~

1% 1s wsual to write z for the number « - ¢y and to refer.
the planc as the z-plane. As before, the real numbers afeythen
represented by peints on the axis X'0X, called therréal“axis,
and the purely imaginary numbers by points on thewxis V'O,
called the imaginary azis. The origin O Tepresents zero.

With O as origin and OX as initial line, let {#,4) be the polar
co-ordinates of P: then )

r= 0P == Vit + 9’2){\
cos 8 = afr, sin § = yfn '

. and 2= 4 gy = r(qosjé + ¢ sin 6).

NN
\

The smodulus of z (written |z} 1’defined to be the length 7,
which is essentially po 'tigelﬁangr‘u ique,

The argument of Gmplitude.ot (arg’z or amp 2) is defined to
be the angle @ and is infinitely many-valued since, if 4 is any
one determination of the angle XOP, any other determination
is 8 4 2kn, where kAgany integer, positive or negative,

As the argument ‘of z is not unique, we define the principal
value as thathdetermination of the angle XOP which lies
between the dimfts — 7 and - =. The principal value is thus
unique ex¢ept’ when z is real and negative, in which case its
principalargument is either — o OF -+ 7, or when z is zero,
in w%ﬁ’ case arg z is obviously indeterminate. {nless the
conttary is stated, we shall, in future, take < arg 27 to mean the
principal valye,

. Vectorial Representation of & Complex Number. If » and 6
are given, the point P is uniquely determined and wo may
represent the nuwber z by a vector of length 7 in a direction
which makes an angle ¢ with the positive direction of the
reai uxis. In accordance with the notation used in connection
with real numbers we shall denote sach a vector by [#]. The
vettor need nob be drawn from the origin but may be situated

anywhere in the plane provided thet it hag the proper length
and divection,
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In practice it is conveniens to employ both the point and the
wachor methods of representing a complex number, and not to
et axelusively the one or the other,

in Hig. 3, the point P with co-ordinates (2, y) represents the
mher z == & + 3y, and the vector OF algo represents the same
aber. The number — 2 iz represented by the point P with
s-ordinedes { —a, — y), and the corresponding vector is OF'

whizh is equal in length but opposite m sense to OP. 8§
The number 42 = ilw + 4y} = ~— y -l & Js repzesenteée by
20 3 PH, PYN are drawn Herpondiuular to the real &xis,
v have OM = NP and MP = O N zo thut the righb-angled
ngles OMFP, PYNQ are congruent. It fo].lowé“’th&t the
gl : POPY 15 a right sogle.
Hence the ‘nultlphe‘r — 1 may be regarded/ as before as an
pabor which reverses the direction of B\Wector, and the
tiplier ¢ as an operator which turns,a/vector through a
yight angle in the positive sense. Lun néither case is there any
change in the length of the vector. 2\

ExampLe 1. In the Axgand dlargram, the numbers i, i,
— 1, —i are represent%%r uYBthe omts 4, B, C, D, and

ihe corresponding vectors ates OA % 0C, 0D, sl of uxit
tength, and their prlncigal arguments are 0, ym, + », — 4,
respectively. Hence wednay write

1= 1(cos 0 gebsin 0), 4= I{cos m + 4 sin §m),
— 1 = 1(cos 4"+ sin 7), — 3 = 1{c08 — $r + ¢ sin — }7)

The number (1 + ¢) iz represented by the point E with
co-ordinates 1, 1). Hence, OF = 4/2 and the angle XOF is
m: so wghave (1 + i) = 4/2(cos 7 4 ¢ 8in in).

Exgpir 2. Consider the locus of a point which represents
8 number z which varies so that |¢| = ¢, where ¢ is a real

_positive constant. The geometrical interpretation of this
condition is that the distance of the point z from the origin is
always equal to ¢. The locus is therefore a circle with its centre
at the origin and radius c.

Exawrre 3. If 2z varies in such a way that arg z is constant,
the locus of the point z is a straight line drawn from the origin.

Examprr 4. If a point P represents the number x -+ fby,
the point @ which represents the conjugate number a— &y
has co-ordinates {z, — ) and is the image of P in the real
axis. Iz 4 iy = 2z, we denote the vonjugate » — iy by 2.
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Addition and Subtraction. Let P and Q represent z = i L 4y,
and 2’ = 2’ 4 gy, respectively (Fig. 4). Complete the parallel-
ogram OPR(}. Since PR and 0@ are equal and paraliel, their
projections on the axes of co-ordinates are equal, and so the
co-ordinates of B are {z 1 &', 4 4 y'). Therefore R represents
the sum of the numbers represented by P and Q.

Vectorially, we have OR — 0p + O}, which is the statement
of the parallelogram law for the addition of two vectors.

In order to represent the difference of the two numbers,\we
may apply the above comstruction to the addit-ion.\pf' the

RO

O F1q. 4
numbers x 3%y and — (@ 4 iy"). Thus, if BP is produced to
8 so that’P8 < PR in length, the vector P, which is equal

and o'gpwasite to 0f), represents — (" 4 4iy’'). Then
N\ 08 = 0P + Pg

.‘.\l'.
\”\-,asi'id therefore U8 represents (x +ay) — (@ + iy,
It is not necessary to make use of the origin in the con-

struction; for, if the vectors AB and BC have the same
lengths and directions as OP and 0Q, respectively, the triangles
ABC, OPR are congruent and similarly Placed, and therefore the

vectors OR and 40" are equivalent, and either may be taken
to represent the sum.



COMPLEX KUMBERS AND THEIR RETPRESENTATION e

ince the length of one side of a triungle cannot exceed the
t the lengths of the other two sides, it follows that

(JP -+ PR = OR and so el + [2'] = |z + 2|

reswit may be stated: fhe sum of the moduls of two complex
rs 15 greater than or equal to the modulus of their sum.

ity occurs only when the peints O, P, B are collinear
lies between O and R, i.e. when arg z = arg z’, ‘

construction may now be extended to give the suny “of
number of complex terms. If vectors AR, BC, CD répre-
%, %3, %, respectively (Fig. 5), then AC represer}_‘gg‘él’ 2

vféw.dkiglaggﬁgii'é;y.org.m _

«il so AD represents z, 48, 4+ 7. Since the length 4D
catmod exeeed the sum Qf@he lengths AB, BC, CD, we have
[z + Al Jal > o+ 2 + 7l

imilarly, we ma¥ deal with the sum of » numbers and deduce
that the sum of Eheir moduli is greater than or equal to the
riodulus of thefrsum.

ExamrrLec8Y The vector which connects the points ¢ and z
in the g&::én“d diagram, in the sense from ¢ to 2, represents the
nmbergs- ¢ and its length is |z — ¢|. If ¢ is constant and z
varias\yn such a way that [z — ¢] is constant, the locus of the
p)\??f}‘,‘. % 18 a circle with its centre at the point ¢.

¢’ is another constant and z varies so that

|2 —¢| + |z — ¢’] = constant,

the locus of the point z is an ellipse whose foei are the
points ¢, ¢f,

ExamerLe 6. Let ABC be any triangle; then the vectors
BC, 04, AB represent three complex numbers whose sum is
zero. A similar resutt 1 true for the numbers represented by

Q!



10 THE COMPLEX VARIABLE

vectors given by thasides of any closed polygon taken in order.
Multiplication and Division. The product and quotient of
any two complex numbers are also complex numbers; for
@+ iy} (&' +iy') = a2’ — gy’ + ilay + 2'y)
' x4y (& iy) (@ —dy)
@ ) @ — )
o Ay iy —ay) N
B 2% 4y

and

Notice how, in effecting the division, use is made S6tHe con-
jugate of the denominator in order o obtain a new denominaker
which is purely real. N

Now consider the same operations fromi/the geometrica!
point of view. N

Any two complex numbers z, 2’ may b written in the form
2= r{eos 6 + i sin 0), #’ — #fdos &' L i sin 0'),
where r = |2, ' = lz'], § = &1‘g‘z’,w;’= arg 2'.
Hence z X #' = rr' (cos 6 44 sin 8) {cos 6 4 ¥ &in 6)

= 7’{{casbos 0 — sin § sin §)
Www'ﬁ%g@'f(%'sﬁbxl %rgéglg'lﬁl— cos § sin §')
= rr'{eos (0 + 0') + i zin (6 L+ )}
Therefore |22'] == [z] x 7]
and one deterlg’tiaﬁien of arg zz' is arg 2 4 arg z',
(Tt will be, rémembered that arg z is indeterminate to the
extent of an\added or subtracted nrultiple of 2x.)
Again’\¢
z . (eos 6 + i sin 6) (cos 6’ — ¢ sin 8%
z’,Sf’(cos ¢ + i sin §') {cos 6 — i sin )
R \ o r{{cos 6 cos 8’ - sin § sin ) 4- i(sin 8 cos 6’ — sin &' cos N}
~O° r'(cos? §' + sin? )
\/ = {rfr') {cos (6 — @) 1 5 sin (6— 8.
Therefore |2f2'| = vfy' — [2lf12'| and one determination of
arg (2fz') is arg 2 — arg o',
If the vectors which represent z and 2’ are parallel,
arg z — arg 2'
is zero (when the vectors are in the same sense) or -+ z (when
the vectors aze opposite in sense): in either event the value of
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the quotient 2f2’ is purely real. Conversely, if zfz' is real, the
veators [z] and {2'] are parallel.

he vectors [z] and [2'] are perpendicular, the arguments of
z v 2’ differ by an odd multiple of } # and the quotient is
pursly imaginary. The converse of the result is also true,

4

R(z2)

X ! ww @ bra L}HEj’aF y.orglie)) X

AN
vl

X \\Y Fia. 6
In particula.r,&lié“lleciproeal of 2 is
o= (1r} §oos (~ B) + i sin (— 6)}
and so ths\iﬁ?ﬁicipal arguments of a number and its reciprocal
ure equel I magnitude and opposite in sign. )
Geometrical Constructions for the Product and the Quotient
oL 2@0 Numbers. In Fig. 6, let the points 4, P, respect-
i%¢ly represent the numbers 1, 2, 2'. Construct a triangle OPR
which is divectly similar to the triangle 0AQ, the correspon-
dence of vertices being in the order of mention. _
Then, since ORJOP = 0QJ0O4, OR = 0P .0Q, as 04 is
of unit length. Ao /4OR = s AOP -+ /POR
= LAOP- /7 AOQ
= arg z + arg #'.
The point R therefore represents the number #2'.
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Now make the triangle 0AS8 directly similar to the triangle
OQP. Then 08§04 — UP{0OQ,

and A0S = /QOP = arg z — arg z',

The point § therefore represents the quotient o/,

Exampir 7. Consider the constructions for 22 and 1 Iz
Taking 2’ in the above equal to 2, the points P, § eoincide and
the point R which represents 2* is found by making the triansle
OPE similar to the trian gle OAP. The point & which represents
1/z is found by making the triangle OAS directly sipiilar to
the triangle OPA, 'S\

Examere 8. Let P and ¢ represent z and 2’ xespectively
and let any point B on the streight line PQ &epresent 7.
Since the vectors PR, BQ. which represent{s — z, o _ 57
are in the same line {their senseg being th& same or opposite
according as R divides QP internally or e ternally) the quotient,
" —2)/(z’ — 2"} is real and positive oftegative according as
R divides Pg internally or externally.\

Hence 27— » — k(z' — 2y and\so 2’ — (z + 221 + &
where the real constant & ig pogitive for internal and negative
for external division. merically F — PRIRO.

In particnlar, tHe"rh; %ﬁpgfﬂ%&f F 1w

ExaMPLE 9. Suppose that the vertices of a triangle ABC
represent g, b, ¢ respectively. Then the middle peint D of B(
repregents (b 4- c).~The centroid @ of the triangls divides
ADin the ratio 2 ¢ Q'and so represents the number 4(g 1 +¢).

EXAMPLE 10y, }\w opposite vertices of a square repre.
sent 2, 4 -— $\Find the numbers represented by the other
vertices. A\

If, in B0, 4. (' are the points 2, 4 + 4 the middle point
Eof 4€0s 3 < 2 (using Example 8 above) and the veetor B¢
J'epl"e'&%nbs (4 + 45— (3 + 2} = 1+ 2. Sinee DE — EC and

CED is a right angle. 7] represents 7(1 = 24— _ 2 -4,
Therefore [ tepresents (3 4. 27} L (— 2 . = 1 4 3
4 Similarly, 7B represents — (1 4+ 2} = 2 _ § and B repre.
sents (3 4- ) . (2. Fh=e 5
Exanrre 11, If 2, 2 are such that |z 4 o] — jz—2'1,

prove that izf2’ is real and that the straight line joining the
points z and 2’ subtends a right angle at the origin, (U7 L)

I in Tig. 8, P and ) represent 2, 2 respectively, the point
&' Tepresenting — 2’ is found by rroducing QO to &’ 8o that
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! are equal in length. Then, as @'P and QP represent
bers z + 2" and 2z — 2, which have equal moduli,
= #43 and QP is the perpendicular bizector of 6. Hence

C(4+41)

Fre, 7

— Q0P =0 and thereforg %jz is real. Also
, subtended by P and ¢ a,t@i% origin, is a right

N/ _ | X
arg A
— (z ’-%)\

Fra. 9

Exampre 12. In Fig. 9, 4, B are two fixed point< on a
circle, P, P’ are variable points on the two arcs 48. If the
angle APB is «, then the angle AP'Bisw —a. Let 4, B, P, I
represent the numbers @, b, 2, 2/, respectively.
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Then arg (z— a)f(z— b) ~ arg {z -- a) — arg (z — b)
= o + a multiple of 2x
and, arg (z' — a}f(z' — b) = arg (z'— a} — arg (s’ — b)
= u— 7 ++ a multiple of 2.

It follows that, if z varies so that arg (- a)f{z—b) is
constant, the locus of the point z is ar arc of a circle whieh
Passes through the points a, &.

oA
£N\S

ExawrLe 13. Suppose that z varies 50 that
[z — a)f(z — )| = &, N\

where % is constant. Then the point ¢ which represents »
moves 50 that AQ : BQ =~ % and its locus(is a circle {unless
k=1 when the locus is the perpendicular” bisector of 4B
For different values of the constant & the.tircles form family
of ecoaxal circles having 4 and B as limiting points, They are

orthogonal to the family of coaxalcircles which pass through
the points 4 and B (considerad inExample 12 above).

Exawrre 14, Ifq, b ¢ T ’:ff a5 sqmplex numbers repre-
sented by 4, B, C’;’ \ﬁv ,l’ ,’~r§%’%e%‘?€gr%1y, prove that the neces-
sary and sufficient condifion for the triangles ABC, PQR to
be directly similar iz ¢

g @ br—2) + olp— g) — o,

Show firtheh that, if L, M, N are taken on AP, B, OR,
so that Py

N ALJLP = Byymg ~ CN/NR,
then thesriangle LM N is directly similar to the other two.

If(ths triangles are directly similar, the angles BAC, QPR
ar@requal and in the same sense, and salso ACJAB = PRIPG.

These conditions are necessary and sufficient,

Congsider the numbers {c—a}f(b—a) and (r— p}f(g — p).
Their moduli are AC[AB and PRIPQ, respectively, and their
arguments are the angles B4, QPR measured in the same

If, then, the triangles are directly similar, the above numbers
have equal moduli and arguments and so are identical: con-

versely, if the numbers are equal, the conditions for direct
similarity are satisfied, '
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Hence the necessary and sufficient conditions for the triangles
5 oe directly similar may be written

(e—a}flb—a) = (r—p)llg— p)
wWg—7r)Folr—p)+elp—g)=0 . . D)

in the second part of the question, if we write & for the
vaine of the equal ratios, then, from Example 8, L, M, N/
repwesent (@ + kp)f(1 + + &), b+ B+ &), (¢ - ke W1 - &)
. L-tnely It is easily seen that if these numbers are.&ub
ted for p, g, and r, the equation (i) is still satisfied. Oonge-
tly the triangle LMN is directly similar to the ofhe¥ two.
-amers 15, Two points P, ¢, represent the roots. o‘f the equa-
az? -+ 2bz 4+ ¢ = 0 and two other points P’ Q represent
oots of p’

et - 20’2 4 ¢ = 0.
%% R is the middle point of 2
£4, show that

&

S PRP = /PRY o
aud / RPP" = /RQuE.w. dbraukhlar_y oRp-
e’ o+ ca’ = 208 (U.L) & Fre. 10

‘We have to show that(the triangles PRP', @' BP are directly
similar if the condition(J$ satisfied.

Let P, @, P', ¢ vepresent p, g, p’, ¢, respectively (Fig. 10).
Then R represent$)d(p 4+ ¢) = — bfa. From Example 14, it
follows that the\trxangles PRP’, 'RP are directly similar if

2l{— b]?t‘ —pl— fa) (p— ') + p'l¢ + Bfa)] = 0.
On multélymg by -~ @ this becomes
~<~~ ap? -+ 2bp — b(p' + ¢) —ap'y’ =0,
\&;noe ap + 2bp + ¢ =0, p' + ¢ = —2'fa’, and p'¢’ = ¢'Ju’,
the condition reduces to
¢+ 2b(— b fa’y + {ac’fa’y = 0 or ac’ + oo’ = 2bb'.
ExampPLE 16. P represents z in the Argand diagram and &
represents 22, If P lies on the circle of unit radius with its centre
at the point + 1, show geometrically that{e® — z| = |z| and

that arg (z — 1) = arg 22 = } arg (* — z). Find the polar
equation of the ldcus of ¢ (U.L)
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In Fig. 11 let 4 represent - 1 and let arc

g 2= 10. Maks
the triangle OPQ directly similar to 0A4P, Then @ s the
point 22 gince

¥
Q(z2
N

‘E N

=
(A
~n\

<\

2. N
22 Z ,Z’.\\
w7
r-g \:
Az
14 o
v g
50 T2 AP
7 ~ §9
8 _ &4 z
O www.dbral:{lf:gl‘;é’@}y.org?ln X
K
’\ /
S
t...‘..t
2NY
:os;w;
M
O
~;::‘
,a\\, Y’
)

Y1z, 11

LXOQ = 40P L £LPOQ = ¢ and 09 : OP=0pP : 04,
whence 0Q — |22]. '

If P lies on the given circle, AP ig of unit length and
the two triangles are isosceles, The vectors OP (==z) and
PG (=22 —2) are equal in length, ie, [2% — z'[ = |z].
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gl arg (22— 2) =  XRP
= ¢ XAP -+ L APR
— 36/2,
== arg 2% = (2f3) arg (z — 2) — arg {z — 1),
.l = », we have
r = jz{% = (2 cos 10)? = 2(1 + cos 0); Q
v tocus of @ is the cardioid given by the polar equation’y,
r = 2(1 + cos 8). O

Twaiwntprm 17, If the vertices of an equilateraj ”%‘r’iangle
sent @, b, ¢, prove that ?

a® 4 02 2 — he— ¢t — ab = 0;"‘;\

vectors which represent the numbers G>'c,c—a,a—b

gides of the friangle taken in ordep! ;?l’hese are equal in
and fheir arguments may be c’}’éressed in the form
b 203, 0 4+ 4%f3, 01 6, 6 — 2rf8 0 — 4xf3, according to
s of description of the triange.

<

ther case, (b -wwjf@seadlibeiny crgifa — ), since the

it
# on the left and rightWdf this equation both have unit
s and the same argument (+ 2mf3).

it eross-multiplying, tieequation becomes

(beteMa—b) = (c— a)?,

reduces to thégequired condition,
Lhe converse, dPthis proposition is also true and i left as
an exsrcise fo:.'\?;-];m reader,

\O EXERCISES
1. a?'iag‘}g"(J\n 4 diagram the points which represent the numbers
A2 B U2 310, (1 4 (L — ), (1 + 41— i),

\} (1 +20)(5 + T8) (8 + 4401 (6 + §)-1,

X.-‘ Prove that the points @ + @b, 0, 1f/{(— a 4 ib} lie on a straight line
aml that Lhe points o + ik, Hf{— a L i8), -- 1, - 1 lic on a circle,

3. 4, B, € ave the vertices of an equilateral briangle. ¥f A represents
5+ 7 and the centroid of the triangle represents 1 + 44, find the
muibers represented by It and €.

£ 1 2, 2, 2, are tomplex numbers such that their representative
Doints are collincar, prove that they satisfy a relation of the form
98 F B2y + ezy = 0, where @, b, care mal and g L 6+ ¢ - 0.

5. 8ix points are the vertices of a regular hexagon ABCDEF, the
inside of (he hexagon being on the left when the perimeter is described
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in the order given. If 4 is the origin and € represents 3 + 44, find the
numbers represented by B, D, E, F. (7. L.}

8. Two complex pumbets are represented by points marked in an
Argand diagram. Constroct the poiné that represents their produci.
Carry out the construction for Lhe nunbers (5f4F + i, — 8 = (5if4)

: (. L.}

7. Three complex numbers %, ¥, 2, such that #? = 1pu, are represcnted
by the points P, Q. 72, respectively, If B is joined to the origin () and R
is produced to P’ so that OF = OPin Iength, prove that the gircle
which passes through the peints R, Q. P passes also through thabolun
representing — ». Prove also that P represents — w | ufi |, AU

8. Bhow that the straight lines Joining the points representi}:g the
numbers a, b and ¢, d are parallel if (g — bifle — d) is purdlys Teal, and
Perpendicelar if this fraction is purely imaginavy, A\ by

Two adjacent vortices of a Sguare are the origin and€hdypoint § + 34,
and the figure les entirely above the real axis. , Hind the nombers
represented by the remaining vertices, ~.\\

9. P and @ are two points which represent «Complex numbers P @
respectively., If k is a real constant, show howbo find the point which
represents p -- kg — p). Ve \ud

The interual and external bisectors of & dangle subtended by P oat
the orighh meet PQ at the poitubs INE} respectively, and M is the
mid-poict of I#, If OH

= cos («f6) $3j*in (x]0)

and it Alpeas l{BI Y ORI 73)1,
show that 7 represents (y—{—:if'S) (1 -+ 433 and find the number
represented by M, ~ (L)

18. The numbers p, gd are tepresented by the vertices P, &, B of
an isoseeles triangle, t{?g ngles at 9 and R being cach {m— 2)f2, Prove
that (r — g} = 45 ‘1&,@ =i — g

11. 8how that the' points — L, + 1, iv3, ave the vertices of an
equilateral triafigie. By using the result of Example 14, worked an
p- 14, dedugefhe condition thai the triangle, whose vertices are the
points a, b, & slould be equilateral.

12. In Ak plane of the complex variuble =, regular hexagons are
describ to have for one gida the line juining the points — 1, + 1,
Finduthgvalues of z represented by the remaining eight vertices.

JThe ‘whole plane is partitioned into cqualeells, rach cell baing a regular
hezagon, and z, Z; are the numbers represented by two adjacent

ertices of one cell. Prova that, if 2, 2’ are the numbers ropresentoed by

he pointa in which two opposite sides of one of the celly are mel by a
line perpendiculsr to them, then

either 7=z B b iyE) B — 2,1,
or # =2 3 —~1iy3) (23 — 20,
or else =z 4 1‘,—\/3(2; — & {U.L.}

13. Show that, if (2, — )2, — Z,) = {2y — 52, — Zg), the points
%1 2y, 23 and Z,, Z,, Z. are the vertices of two shmilar triangles.

Three gimilar triangles BCA’, CAB’, 4BC” aro drawn on the sides of
a triangle ABC, the correspondence of veptices being indicated by the
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» of mention, with 4, B’, ¢’ lying on the wides of B, C4, AR
from 4, B, C. Show that the triangles ABC, A’B’C’ have the
roid. (UL}
4, B, € are the vertices of any triangle and BC, €A, AB are
ibo 47, 1, 7, where AR = CA, B = AR, CA’" = B(C, show
teiengles 4°B'C”, ABC cannot be similar (correspondence of
s in the order here given) unless A RC is equilateral, (U.L.)
, b are complex constants and 2 varies so that arg {z — a){z — b}
tant, prove that the point 2 moves on a branch of s rectangular{
it which passes throngh the points ¢ and b. .
the origin and U represents + 1. If P represents a vaciable
prove that PO is perpendicular to PIF if the real paxt of
15 #ero. Deduce that, if 2 = 1f(1 4 ) where ¢ ig a, variable
wher, then the point representing z describes s cirelé, of uaib
. NS (UL
¢ = 2%, show in an Argand diagram the path trdedd out by the
a8 the point z describes the rectangle whose Vertices are the
¢y + & - i, where & is real. {U.L)
terpret geometrically the following loci—.,—\\ )
W e+1P~]a—1p=2; €
(i) arg {(z— Dtz + 1)) = i) (0.1

i, Two complex numbers z, w areMrelated by the equation
i} = 2(z — 4). Bxpress in the fofm o + ib the values of w when

L and - 2 = 5. Indivete Sheapdbiiens 8F Bl comesponding points
Lodingtam . ol
Ir an Argand diagram thé‘points P, Q represent w and 2, where
1) =z — 1. Find the ldcus of @ if P describes a line through the
§ inclined at an angle a$o the z-axis and show that if § describes

irale of & coaxal systeny Whose limiting points are (1, 0), (— 1, 9), thén
P dexgribes a circle who&entre is the origin. {85

2. Prove that tha/Becessary and sufficient condition thab the points
212 %oy B3, 7y may balefeyclic iv that (z; — 2)) (2, — 2, )f(zy — 2,) (2, — 2;)
shonid be real,” £\

22. Bhow thébthe afix of the centroid of particles iy, Wy Mgy o o o
placed at t%"i)ﬁinﬁs AP N T

(2" + mazy + g2y + . o imy +my oy + . L)

28. W = (d ~ a){(b—¢), @=(d—b)fic—a), R =(d~ c)fla—b),

prové that
Y QR+ RP + P+ 1=0. _

\f&king @, b, ¢, 4 to be the complex numbers represented by 4, B, C, D
in the Argand diagram, show that, if DA, DB be respectively perpen-
dicular to BC, €4, then D is perpendicular to AB; and derive from
the above identity the relation

BC.EBD.cn + CA.CD . AD + AB . 4D . BD = B0 .CA . AR,
the triangle 4 BC being acute angled. (U.L)

24, ABCD is a rhombus and AC = 2BD, If B, I represent 1 + 3i
and — 3 - 4, find the numbers represented by 4 and C. (U.L.)




CHAPTER II
DE MOIVEE’'S THEOREM
Theory of Equations, If N\
Jz) =a@n + qun-1 1 gzt~ &y O\

where n is a positive integer and the coefficients)a,, a,, o,
« -« @y are real or complex numbers independenfs of z, fiz) is
a polynomial and the equation flz) = 01is deﬁnpa as an algehry:s
equation of the nth degree, Any value of z5hich satisfies thi
equation is said to be a raof of the equadion or a zere of the
polynomial f(z}. According to the fundamental theorem of
algebra (which will not be proved Heve}, every such equation
has at least one root, which is eith%r real or complex. If we
assume the truth of this theoren, it is easy to show that an
equation of the nth degree hag »n and only % roots.

Suppose that, f(z) snuishess mivery in— a; Where &, ig sither
real or complex, From(“the factor theorem of elementary
algebra, it follows that™z— »,) is a factor of Jz) and we may
write A .

 ONE) = (e~ w)Fea),
where F(z) ig a\}olynomia,l of degree n — 1, and must iteelf

vanish for gdwe value of 2, say «p. Therefore F(z) must have
(z— «y) 38/ factor, the other factor being a polynomial of

degree g2,
ofitituing in this way, we ses that W& may write
ST St — ) ) ) . g,
o “Clearly, f(z) vanishes only when 2 has one of the values
{ 3o, . .., and the proposition is proved,

If we write out the preduct of the factors in the above
expression of the polynomial, we obtain the identity
Wttt fagn-t L L
=2t — Par-1p pom-a_ + (= 1yPan-r
+ . (= P,

where P, denotes the sum of the products » at a time of the
% roots g, Bgy o« v Oy

20
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sifying coefficients, we have
Py =—ajfa, Py=ayfa, ... P, — (— Yyra fa,,

v Pyo={— lira,fa,
P YOO8 %, o, . . . u, of the equation need not be distinct :
trien: are equal to «; and all the others are different from
¥ that « is a multiple root which oceurs r times, or,
iefly, o is an 7-ple root. When this is the case

f@&) = aglz — 0)ei2), O

#(2) is a polynomial of degree m — r which da@s “not
vhen 2 = g, ' A\
tiating with respect to z and denoting,denvatives
: of dashes, we have RS
F@) = afe — o) (2 — a)d'(2) rde)).
fe expression in square brackets on.t$e’ right-hand side

% vanish when z = o, and so itéélows that f'(z) has
3w {z— g % Thus if flz) hag\i, Jos an r-ple root, f{z)
an (r — 1)-ple root. W W

o, if f{z) = 0 has 5o repelited root, then its roots are
org those of the &e%@ﬂ%%ﬁﬁ’éﬁ?ﬁﬁf?z) = 0,
1ave thus a means of finding out whether or not a given
ion has multiple rogts. All we need do is to examine
% its derived funetig f'(z) for & common factor: if there
© 16 common faot '\évﬁ’ich 18 a funetion of z, there are no
meltiple roots, butf?ﬁ there is a common factor of the form
%~ )’ =1, then wJjsbn 7-ple root,

For examplghi¥/can be seen in this way that the binomial
equation 2® ¢ 0, where ¢ is not zero, has n distinct roots,
gines the Qal“fiifed equation 72" ~1 = 0 iz satisfied only by z = 0
and thisgwalue of z does not satisfy the given equation.

If THE' COEFFICIENTS ARE REAL, COMPLEX ROOTS OCCUR TN
CONgUGATE PAIRS, The results obtained sbove are true,
wb%éver may be the values, real or complex, of the coefficients
@, @y, . . . @, If, a9 is wsually the case, these coefficients are
all real, it can be shown that compiex roots (if any) oceur in
conjugate pairs.

If we give z a complex value 2 + 4u. the polynomial has the
value

JlA 4+ tp) = oA + ‘ip)“}—)]-— al('ﬂ. + a4 a,

= P 4 4Q,

where P and Q are real.
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Since even powers of ¢x are real and odd powers are purely
imaginary, P contains only even powers of # while ¢ contains
only odd powers, provided, of course, that the coefficients ¢ are
all real. If the sign of u is changed, P is unaltered but ¢
changes sign. Hence

flA—du)= P — jt.

If 7 + 4u is & root of the equation, P and & both vanish and
therefore f(4 — ip) = 0, ie. complex roots oceur in oconjugate
pairs. Consequently, the total number of complex roots of
an equation having real coefficients must be even (or zero).
If the degree of the equation is odd, the numbet, ‘of real roots
musgt be odd also. ;

If the polynomial has complex zeros, tl;effa'?c.tors correspond-
ing to these can be combined to givesgtadratic factors with
real coefficients, since A,

(z—A—idu){z— A+ @)}e (z— 43 4 p2.

Such a polynomial can be expfedsed therefore as a product of
linear factors like (z — «), igewhich « is real, and of guadratic
factors like 22 %hw@c@@h??ﬁﬁkpbﬁm&ﬂd ¢ are real,

Bg. 22— 1= (={F+2+1)
and Pl =P+ D= 24/3 + 1) (22 4 24/8 + 1),

De Moivre’s@earem. If 8,, 6, be any two angles, we have;
as on p. 10,5

{cos 64 sin 6,) (cos 8, -+ 7 sin By)
/0= 05 0, cos O, — sin 6, sin 6,
O" - ¢(sin 6; cos 8, + cos 8, sin B,)
’5\ = c0s (6, -+ 6,) + ¢ sin (4, + 6,).
o ’Q’Multiplying by = third factor of the same type, we have
N/ (cos 6, + isin @) (cas 6, + i sin 8,) (cos 8, + 4 sin 0,)
= [cos (6, + §,) + i sin {6 + 8,)] fcos B + 4 gin ;]
=208 {8 + 0, + 0;) + i sin (B + 8, -+ 8).
Continuing in this way, we obtain the result for » factors —
{vos 8, + 4 sin 6,) (cos Oy +48in 8,) . . . (cos 8, + % sin 6,)
=008 (04 6, + ... T 0u) +isin (6, + 6,4 . .. -+ 8,).
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Hwepub 0 =6, = . . . = 0§, = 0, this result becomes

{cos § + 4 sin 6)* = cos nB + i sin nf,

whers ¢ ¢ & positive integer.

We shall now show that this result is still true when # is
any v i number, positive or negative.

Aesurne that « is such that

{cos § - 4 sin )7 = cos « + 1 sin «, O\
' € N\
P - °\

where = and ¢ are positive Integers. « \
Then {cos 6 4 i8in 8)? = (cos o + i sina) L& )
ie. cos pb -+ ¢ sin P = cos ga -+ ¢ sin g\

{from the result above). On equating the realand imaginary
parte, we see that our initial assumption is justified if o — p0fg.
This iz not the only possible value of a;-the other values will
be corxidered later (p. 24). AV

Ore value of (cos § + 4 sin Bl ig\thérefore

cos po PRI YRERR

Now suppose that m is any® heg&tive integer or fraction.
Hinen RS

(cow § 2- ¢ gin f) {cos 6\\%’ gin 0} = cos? 8 -} sin?2h = 1,

we have
{€o80 -+ ¢ sin 8)" = (cos § — i sin §)—»
R0 = [008 (— §) + i sin (— @)]~m
%“‘ = gog mb -+ ¢ sin m0,
by &{{pﬁcﬁtion of the above results, since — m is positive.
nay now state de Moivre’s theorem in its general form
th}}s ! one value of (cos 8 4- 5 sin 8) is cos nfl 3- i sin nf, where
N 18 any rational real number.
. Dednctions from de Moivre’s Theorem. Let » be a positive
Integer and write ¢, s, £ for cos 6, sin 8, tan 6. Then, by the
binomial theorem

€08 2n6 - i sin 20 = (¢ + i)
— C‘Zﬂ + 21101629%—1.?:8 + 2“026%_2('3:8)2

+. o e
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Equating real and imaginary parts, we have
cos 2nf = ¢ — (et =2t . O et it — L (=8
sin 9nf = 2?&0 ein—lg 2116‘ pn — dg3 e 2nC’ (»273—060
L (= 1)mieg,, (6211 3,
Similarly,
cos (2n + 1)0 + isin (20 + 1) = (¢ 1 i)™ ~1 '
— et g Em 1) oty O\
+ 2+ IC' (a2'n 16@)2
+ (@%
and henoee A
cos (20 + 1)) == g1l 410 e -T2 _1,."2‘n+.10 PLES I
—_ {___ 1) 2 +~lg 082"
Sil]. {2?1 ,,,%_ 1}8 — 2-n+10162ﬂs_w B 5 1(7 6211 233 + an 4—1{:?502“-—4_95
— . ..+ (_\j_jﬂ‘g&n-‘—]

By division, we obtain \ o
tan 2nf AW
2n01t — 2?IC,‘. i _l__ 2110 }\o + (_ J_)‘n -1 2n02n_1t2n—1
I 2 T Ty
tan (2n + 1}8
2n+1(“ t__en +IO f] 1. Zrn+ lc‘st‘i . ,_1_ ( ..... )nt2ra+1
= 1__zn+‘1052_1_2411031 . __k_(_l)nﬂnilc {2n

THE ATH RO0TS OF UNITY, We shall now apply de Moivre’
theoer to evaluate the nth roots of unity, » being a positiv
éger. In other words, we shall solve the equation 2" =
whwh has been shown (p. 21) fo have # distinet roots.
\ Suppose that the equation is satisfied when
) f, z == r{cos « + ¢ sin «).
~0 " Then we must have

)}
7

r1{cos o -+ ¢ sin g)* = r*{cos ne+ @ 8in ne) = I
whence r = 1, cos nx = 1 and sin na == 0, These condition
are satisfied if na = 2w, where £ is zero or any integer. Takin
E=10,1,23,...,n-—1 we obtain the % nuinbers

1, cos (2mfn) + ¢ sin (27fn), cos (4nfn) + i sin (du/n),
. ¢05 [{2n — Dymfn] -+ 7 sin [(2n — 2)=fn],

ali of which satisfy the equation.
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Ne iwo of these numbers are equal because the differerice
betw ¥ two of the values of the angle « is less than 2
The rs are thevefore the a distines values of the nth
103 ty.

Int raud diagram, the znth roots of unity are represented
by the vertices of a regular n-gon inscribed in the circle j2} =1
and b one vertex on the positive branch of the resl axis,

If w is sven, there are two real nth roots, viz. 1 and — 1,
whic given by taking k= 0 and in respectively. Ty
rems %= 4 roots are complex, If » is odd, the only réal

£ m = ¢o8 (drfn) 4~ ¢ sin (2#/n), we ocan m}riéb the
1 form 1, o, %, . . . @"~1, whence it dg*seen that

n 4 geometric progressicn with cofmmon ratio o,

Their surs is given by the usual formula, viz MN— @mf{1 - m)

| lishes since w” = 1. {The same/gesult follows more

i the fact that the equation g’*} I = 0 contains no
*and o the sum of tho rootd\is Zero.)

TF RCOTS OF ANY COMPLEXANMBER. If ¢ is any num-

bev, ia gereral complex, jtabesliiipbts ateithe 2 values of z
which ity the equation 2 =288 If z, is any one of the roots

of thiz 5
A= 1 ie. 2 Qs an ??,t-h\
A the » values 1, o, ©?,, )t

In evder to find g Suifable value of z;, we express ¢ in the
torm leof {cos 6 o ¢ 80 0} and assurae that

= E{cosd - 7 sind).

robt of unity, Thus we can give

P
We then Y}li’l-:l;(\{-‘;\ 3

zﬁ%;‘é(;s h + 4 sin ng) = |¢] (cos 6 - £ 5in 0),

and i condition is satisfied when R = le/¥" and ¢ = 8/n.

T3] denotes the real positive nth root of the positive
nonther Jol, and 0 may be any determination of arg ¢, but it is
usually most convenient to take the principal value. The
2th roots of ¢ are thus

2, Wz wi, L L L e,
where 7y = |ef¥*[eos (6fn) 4 i sin (6/n)].

It will be obgerved that these numibers form a geometric
Progression of which the sum is zero. Inserting the value of

22— 122)

‘uation, then iz is alsé'a root if frzm, = ¢, and therefore .

Q
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and using the result on p. 10, we obtain the zth roots by giving
kthe values 0,1, 2,3, ... %n— 1 in the expression

[e|¥r{eos [(§ + 2km)fn] + 1 sin ({8 + 2&x)fn]

In the Argand diagram these numbers aro represented by
the points @y, @, @,, . . . @n-y on the circle Jz| = leith and
such that the angle X0, is (6 +- 2km)fn. The points @ are
thus the vertices of a regular polygon of n sides inscrthed in
the circle. O\

Exawere 1. The cube roots of — 1. We have herc

B¥cos 3 - 15in 8¢) = — 1 = cos = ;-i—r@ sin a7,

whence B = 1 and we can take ¢ =3, LV
Also o == cos (2#f3) - i sin (2of3)land the cube roots
of — 1 are O
v
€08 (1/3) +- 4 sin (vf3), w[ebs'(w/3) + i sin (mf3)],
w¥cos (7f3) M sin (r/3)]
ie. 008 (n/3) + ¥sin (mf3); cos m + G sin 7 = — 1,
v BB REPETCY - eI 5, g3y
The numerical valudidaze 1+ 44/3), — 1, 31— 74/3).
Exavrrz 2. THencube roots of 1+ 4. On plotting the point
representing $hé pumber I L 4 in the Argand diagram, it is
seen that |1 3{5\\&! = V% and arg (1 4 i) = =/4. Hence the
three cube toets are
2 == 8Wcos (u/12) 1 i sin (mf12)],
wzl'%ﬁm[cos (=[12) + ¢ sin (w]12)] [cos (2243) -+ i sin (2713)]
AN 2U5[cos (3 /4) + i sin (3m[4)].

vand
~ \ 0%, == W0y (mf12) + i sin (=f12)] [cos (4mf3) -+ i sin (4 3]
\ 9 == 2¥%cas (17mf12) + 4 sin (17m/12)].
EXAM?LE 3. Obtain with the aid of tables the values of
(3 — 49)13, i
From the Argand diagram (Fig. 12) it is seen that arg
(3 — 4i) = — 6, where § is the positive acute angle such that

gin § == 08, i.e. § — 53° 8. Hence
3— 45 — 5leos (— Gf3) + ¢sin {(— 6f3)]
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rom four-figure tables, the cube roots are
o8 (— 0f3) 41 sin (— 6f3)] = 543{cos 17° 43’ — § gin 17" 45°)
= 1-62% — (:5204i,
54%cos (1207 — 177 43') 4 § sin (1207 — 177 43']
= — (-3638 = 1-6705
Tt 55 cos (2407 — 17° 48) - { sin (240° - 17° 43"}
= -— 265 — 1-1504.

8 % cheek on the numerical Y )
i, we note that the sum of O
ree Toots 1s zero. ‘
AMILE 4. Prove that \ :
&/
et {7 fT) + cot? (20 )7) 0 f\
-~ cot? (3nf7) = 5. N\ @«
. . a\\w‘
“he equation tan 78 = 0 is L 5
4 if 70 = nw, where » \l
#i¢ or any integer. From QO (391)
esult obtained on p. 24 \\ Voo 12
ave, www.dbra uhbrar_y org.in B =

e TH = (Tt — 0,8 +- "05£5 — N g )[(l — TR e TN - TOE),

re § = tan 0, and fro ‘ths it follows that tan 76 vanishes
#hen = 0 or when 1 4adisfies the equation

7 T*@aﬂ + TOM— 18 = 0,
e 52 91t 3512 T — 0,

i will be o Served that this equation is a cubic for # and
that the roptglof this cubic are the threc different valuecs of
tan? § (othepthan zero) for which tan:70 vanishes. Now tan §

vunishesmily when § is zero or a multiple of #: so that the
rootyafithe cubic must be of the form tan? {(nwfT), where » is

ngither zero nor a multiple of 7. The roots of the cubic are
vh ’tzmz {(=f7), tan® (27}, and tan? (35 [7). Ttis &mly verified
that the insertion of any other possible value of n will give
one of these valuss, e.g. tan? (4x/7) = tan® (3n/7).

if we write o, oy, o, for thesn roots, we have from the pro-
perties of equations proved on p 21,

ottgtty = T and ooy + agoy b oy, = 35,

whence (Hm) + (Mag) + (1fws) = 3,
ie, cot? (wf7) 4 cot? (2nf7) + cot? (3xf7) = 5.
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Exssrrr 5. Find all the values of z which satisfy the S5 nA-
tion (z 4 1) + 25 =0 and show that their Tepresentasive
points lie on 2 straight line parallel to the imaginary axlis.

(UL

Writing the equation in the form [—(z -+ DNz =1 we #ze
that — (z - 1)/z is a fifth Toot of unity and so the roots of the
equation are given by

— {2+ 1)fz = 1 or cos k0 + £ sin 16, ~
where § = 27f5 and % takes in tuarn the values LN 3, 4,
The real value gives z = — 1 and the complex valies\give
z = — If(I 4 cos k6 + 4 sin k§) O
= — 1J(2 cos® 1k6 + 24 sin 146 cos3he)
= 1/[2 cos 3 (eos 156 +- ¢ sifvFk0)]
==~ {008 3k — ¢ sin §k0)/(2Cas 1k6)
= — & L Li tan 1%6. N
All the roots have the same real}-é):t and their representative
points fie on the line & = — } Which is parallel to the imaginsry
axis. o\
_BXTRCISES
1. Plot on the Argand\liagram the roots of the equation & + =0

2. Caleulabe, using,| }qu% Sriulies of (1 — /s
3. Find the ’Hffﬁq%%?es ot - ﬁ?ﬁ t?_ge‘: form ¢ + b, giving @ and b to
four decimals. ‘\ .

Tienoting adylone of the eomplex roote. by 2, find all the values of
{2 — (L K 2° (T.L.)

4, Find.{a;llu the values of (3 44144 and represent: them on an Argand
diagram, (Hence solve the stmultaneous cquations

o TR g = 8, eyt — gy = 1
forgeal values of w and y. (C.L.}
~Prove that the points which represent mo 4+ nod, where w is o

\eemplex cube roct of unity and m and n have any zero or positive op
) ‘negative integral values, are the points of a network of equilateral

triangles.

8. Prove that every root of the equation

T+affaet=0

hag — 1 for its real part.

7. Prove that (3 4 sin ¢ L+ i cos ¢y {1 + gin ¢ —4cos ¢)-"

= CO8 n{dm — ¢) -+ i sin {Fr - ). {(U.L)

B. Belve & — Zaw cos § L g2 = 0 and show that, if x s either Toon
of this eguation, 2% — 2g%g% cag ¢ + a® == 0, where n is a positive
integer. {U.L.}
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9. Holve completely 28 + 42° + 8 == O and 26 — g2 4+ 1=0,
it Ife, + tYn= {1 -+ 1+/8Y, show that

Tp_q ¥y — Eply 1 == 4n_1\r‘/3!

where » is & positive inbeger. (.1}
1. ¥ o is a complex fifth root of unity, find the equation whose
vools are the different values of (1 - m)%
12. Expand cos nfl in a series of powers of cos §, when z is even.
Prove that, when » is even,

nf2
Z tan®f(2r — 1}wf2n] == dnin — 1) O\
r=1
13. Iind all the values of § helween —~ = and -+ = for whfch
sie 3 == gin 44, Deduec that cos {={7} is a root of the equation a\
Ba? o da? — dor 4 1 = 40, A P
14, If = iz a complex root of 212 — 1, prove that A\ 3
P S i1 & %4
L R e A \:.\.\
warootof 2 - 28 — 42 - 1 = 0, N/

i5. If flz) = 2% L 3pz L ¢, show thaf the condii'{m that f{z} and f/{2)
shioudd have a common factor is that ip® + ¢ =BV

Dzduce the condition that the equation p{z{—# 382+ 3oz +d =0
should have two equal rools, \J

'8, Show that [1 + cos(2n L 1)P)fi1 & 305 8) is the square of a
woiynomial of degree # in cos 6, and find\this polynomial when 1 = 3.

'::'*z’ (U.L.)
1. Find all the solations of the eqitdtion (1 4+ )* + a8 = 0. (T.L.)

18. Find an cxpression-fap4o4 gi%,i_mﬁ%_g{ig_qh g,
A

Prove that
-1

N\
Q.
H [a -+ b eat (}3\&# _;)] = 1" sin {(nf 4 na) cosec nb,

m="0
F > N .
FHEFS @ =: ¥ COR c.c\b = rain o [
)
::\”‘
i"\s v
’§w
R\
RN
O
m~\J
\;



N\Lhus, i the series

CHAPTER 111

INFINITE SERIFES—THE EXPONENTIAL, LOGARITHMIC,
CIRCULAR AND HYPEREQLI¢ FUNCTIONS

Absolute Convergence of Series of Complex Terms. We shal:
now discuss briefly certain infinite series of complex teru:s
assuming that the reader is already acquainted with th:
clements of the theory of real series. Consider '@-}ig infipir:
geries : _ \ N
R - -7 S ¢ \

in which the terms arc complex; so Tt "zﬂ =, +~ iy
This series is said to be convergent if the £y%6 real series

e

R A T\ S
and "+ e+ #a -+ .. ’x"%’yn +
wre convergent, x\

Benote by 2, X, V., respécﬁively, the sums of the first »
terms of these three sericg pithen 7, == X, + ¥, Ifthe tes
real serics converge to Hhie sums X, ¥, respectively, then, as
% tends to infinity, Zptends 1o the imit X I-47, and this i
called the sumfq wfimibuiafthecovnpler serics.

The infinite serfds of positive real terms
+ Jas] ..+ ] + ...
is deﬁnedg@thc Series af moduli.

Tt willi@ow be shown that, if the serics of moduli is converger:

g

e+

the cofaplex series is convergent also. Rince «, and Y, are
A (o 142 5 . 2
[z N e, - M and [¥a] < (2,2 - g 2002

2 w1 .
% |z,| converges, the series 3 lz,| and
=1 JIEEN

r

i

N Y || must also converge, for the nth term of either of the
[ |

last two series cannot exceed the corresponding term in the
oz

- . - x
series of moduli. The rea! series 3 %, and %y, are therefors
Hoo =1

absolutely convergent and the series 5 %z, has a finite sum to
+ ] - . E .‘H' =1
infinity. When the series of moduii converges, the series of
complex terms js said to be absolutely convergent.

30
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gxsupLE 1. Consider the series
e o R LIS S Y S LRV SR
ovies of moduli is
e AR L) R NPT I fn) + . . .,

> 10 this &’Alembert’s ratio test for convergence. The
the nth to the (m — I)th term is (I -- 1/n)r and this
s the limit » when # tends to infinity. The series con-\
thorofore when v << 1 and so the original series \:1&'
¥ convergent when |z2] < 1, N\
. sevies of the form \

i

P S
Ay == a7 |- a2® + a2 . . a0

%
vich the coefficients a are independent of'"é;\ is called a
series I 2. A pavticular case is the semds' in the above
e, AN
Bxponential Series, Consider t-he;s??rl‘és

LD+ @Y+ EBY L O @)+

w o= w(cos O 4+ isin ), N
serics of moduh is
U nf1hy 4 (232 Ww\»{mw('tﬁﬂ’niﬁlrﬁi avy ongetfenfal) 4 . . .,

irelr is convergent for :fﬂ finite values of 7, sinee the ratio
nil o the Tre &mo term is equal to #fn and this tends
a8 n tendsMo mhmtv The original series converges
c‘fw ¢ for all ﬁmtn, values of 2.

s i well-k o\m result that, when z is real, the sum of the

15 w,g@;} re ¢ i8 the base of natural logantlmm and is
ol b}&hb cquation

PR ~i (AN +anpn+ a3+, 4+ Qm!h A

'1\0 Hefine ¢, when z is complex, to be the sum to infinity of
iMeabove series, viz,

e = 1 (2f10) 4 (@20 + @3 k. . .= 2 @fal).
n=10

1l

By multiplying the two series together we may show that

e X e = % [{z + 2yfn'].

¥io== )
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From the definition above it follows that the sum of the geries
on the right-hand side is e/**); whenoe it is seen that the
index-law for multiplication, used for real indices, stiil holds
good when the indices are complex,

i.e. 6% X e = glatd)
for all valucs of z and 2'. In particular,
S gt — e Wiy,

. QY
In order to facilitate printing, exp (z) is often used ik‘place
of e7: this notation is especially useful when z is replabed by &
more complicated function. O
The Exponential Values of Circular Functions. Taking

z = 1, where 8 is real, we have

e — ﬁ (Zrenfn ) ' \\
¥ho==1}
= (1= 032!+ fat— g5ped s . )
+u0 — PRI /s - gt ).

The real and imaginary parts 6Dthe series are the well-known
expansions, by Maclaurin’setbecrem, of the cosine and sine
functions of 8, and so we have
€®%= c0s § - 7 sin 8.
ww v dbraulibrary org.in

Tf the sign of 6 be'changed, we have
)
’\\” e~% = cos § — { sin g,
and additiopl and subtraction of these two results give

\:‘933 0 = (& + e=)f2, sin 0 = (e — g—i0)2;,

Q:b';\?ﬂl be noted that the last two equations are merely
rg“sbatemonts of the series for cos 6 and sin 0; for ¢ and e~
2are by definition the sums of certain serics. It is often conveni-
O ent, for the sake of brevity, to make use of the result obtained
) above and write the expression r{cos § -1 sin 8} in the form

e’ Or 7 exp (46).
The nth roots of this number can be compactly expressed
as rVm oxp [4(6 + 2ka)fxn), where & — 0,1,2,3 ... (n— 1).
Stated in the exponential form, de Moivre’s thoorem (p. 23)
becomes ()" — gine which is the extension to imaginary
indices of a well-known index-law. -
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HxampLy 2. Show that
[+ (1= i6)] + [ — (1 + i#)] = 2 cos 6,
whaie { —= tan 18,
Sinee (1 4+ 46f(1 — 5t) = {cos 40 4 ¢ sin £0)f(cos 48 — ¢ sin §6)
= exp {}if)fexp (— LiB)

= exp (1),
the axpression on the left-hand side reduces to
exp (if) -+ exp (— ), RN
which Is 2 cos 6. N\ °

Examrne 3. Show that
32 cos* Gmin? 6 = 2 + cos 20 — 2 cos 46 — 0052.{6. '

AN

inserting the exponential values of cos § a¥d) sin 8, and
vriting z for exp {29), we have \

42 008! 05in® 6 = — Lz + 2-1)2z — z-1 {4
= — Mz — a2 1250
==}t =24 e O+ 24 2y)
=— (@ 27 LBt Dt 2 2 )
= — 008 66 — %'Cos 46 + cos 20 + 2.

% FACTORS OF 2% Jadbilduliwsrghaswinon p- 22 that a
pelynomial with resl cosfficients can be resolved into linear
end quadratic factOm{Q‘;ﬁrhich the coefficients are real: we
shall obtain these factors for the above expression, # heing a
positive integer. 5\

The roots of theequation 2** = 1 are the values of exp (thmfn),
where k== 0, 432, . . . 2n— 1 (see p. 24). The roots given by
% = 0 and\Eok n are real, viz. ] and — 1, and the others may
be arranged in the conjugate pairs ;

g&}i.p’;('isw/n) and exp [i(2n — s)rfn] = exp (— ismfn)

whqr\és §=1,23,...n—1,
The conjugate pairs of complex roots give the factors

[z — exp (ism[n)] [z — exp (— isn[n)] = 2% — 2 cos (smfn) + 1
and we may write

n—1
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TuE FacToRs oF 22t1— 1. This function vanishes \vm,n
z=1 and when z = exp [2¢kn/(2n -+ 1)], where k =

- 2n. The 2n complex roots may be arra.nged m a
conjugate pairs:

exp [2iswf(Zn -+ 1)] and exp [26(2n + 1 — s)f(2n -+ IV

= exp [— snf(2n + 1)},

where s == 1, 2,3, . . . n

Hence Q)

2+l ] = (z— 1) TI {z— oxp [2tswf{2n + 1Y)} A

{z—exp— 233#((2?1, iy

C=f({z—T) H{z~-2z cos [2 arr/(‘?n‘-[— N+

Application to the Summation of Sene& Certain trigom:-
metric series may be summed by ma&ing use of the fact 1%
exp (¢6) = cos 0 4 4 sin 6. AN

EXAMPIF 4. 1f ~N\

=14 rcosd + r%os 28 4 .

+ ?‘“ Leos (n— 136
and ' S—ysmﬁ%—*ﬂasmzf)—}— 4 7 =lgin (n— 1iE,
then O-.[_'E.S—f_—]—z_f.'zs_%_ -—l—z" 1
where —w \;}f\ﬁ?l@gﬁbl ary. 01‘g.in
ie. O fz'.S :_—.{1;_ (1 — z)

=1 —rmexp (inf))f[1 — r exp (i6)]
= [1—rmexp (ind)] [1 — r exp (— i0))f

\ [1—7exp (if)) [1 — rexp (— ()]
X rexp (— i0) —rm exp (inf) -+ 7+ exp [i(n— 1)0]
,(\ > 1~ rfexp (i6) + exp (— 16)] + ¢2 '

3% The denommator of the fraction is veal, bemg in & 1"1;
-~ 1 — 27 cos § - b 73, Expresmng the exponentials in the nume
) ator in terms of sines and cosines and equating real and irnsug-
inary parts, we have
€ [1—7rcos §— cosnll + 1 +1 cos (n— 1)8]
[1— 2 cos 6 - +2] K
and S — &m@—’r’“ sm_n@ + r*lsin in (n — 1)9}
[1—2rcos 0 4 %]
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+ (% cos 20)/2! + (#3 cos 36)f3! -
+ {reosnbiful - . . ..

ote the sum of this series by € and let § stand for the
. o7 the corresponding infinite serics

£l (v2sin 20)f31 4 (#3sin 36)/3! 4- . . .
- {rrsinwl)fal 4+ . .
S =142 22880

o fa | N
2ifnt 1+, O
L " ~
= exp (2, O
N’
w7 has the same meaning as in Example 1. N
Honce O 4 I8 == exp (r cos § - 4r sin 6) (¥

= exp (v cog ) . exp (#rsin §)
== exp {r cos 0} . [eos {r sinx Qz\—j— isin (rsin #)],
therelore O == exp (rcos 8) . cos (r sin gy
S == exp (rcos 6} . sin {rsuf ).

ne series which are denoted bv ' and § in the second
ple are, of course, convergent for all finite values of «
they are the real and imaginary parts of the series exp (z)
converges for all finitkhnaliilesand org.in
savithins of 2 Compléx Number. If z isany complex num-
il w satisfies tl Qqﬂahon 2 == exp (w}, then w is defined
logarithm of z iuit?ze base ¢, As will be shown below, an
aiiaiic namber of walues of w can be found when z is given
&0 80 EVOrY nmhbcr hasg an infintte number of lomnmms
Tet 2 be (,x Bssed in the form r(cos 0 4 7 sin 6) where 7 iz
the moduly) and 6 the principal argument of z. Then, £
W= —r%’}\?_/ we have

S 'r(cos f} - % gin #) — exp (n - iv)
< Y » s exp (u). exp (ia-‘}
= exp (u), {cos v -t ¢ sin v),
whence exp (u} = v and v = § + In,
where =0, + 1, - 2, 4- 3,

Since u is real it Is the ordinary real natural logarithm of the
positive number + which we denote by log, #, and it i3 unique;
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but v can take an infinite number of values differing by
maltiples of 2. The logarithms of 2 are then given by

log, z = log, 7 + (8 -- 2nr),

where n is zero or any integer. The value given by taking
n = 0 is defined as the princepal logarithm of z: its imaginary
part is the principal argument of .

When finding the logarii g
y of a given complex numbper, i
L " i3 advisable to make use\e¥ wle
Argand diagram in {oxder o
determine the prineipal aren-
; ment of the numiber. For
0 ) instance, if the Values of the
7 —————~— logarithm o (2dre required, we
note that ¥ %2 2 gnd § — o axd
80 the %geral value ig

Ay og, 2 2ndr)
Fra. 13 wﬁh}bzo,il,ig,is,.m

P. 6). The general V&hl(?gc:f log, (— 1) is therefore (2 + L.
Similarly, the general logarithm of gl_ |- ¢) is
www dbraulibrary org.in

:m:@ log, 2 + (90 - $Hir]
(Fig. 13) and tHabof i is (2n -+ )i,

Since the lgsarithm is a many-valued function, it is necessary
to take gred# Gare in dealing with it, otherwise it ig easy toget
into diffiéniéies. Consider the following argument—

“It isavell known that log (1/2) = — Tog . Putting v = — 1,
we have log (- 1) — log (— 1), whenee log (— 1) == 0 and
8051 = exp (0) = 4. 1.7

SThe fallacy arises from the fact that, in the above argument,

(the logarithm iz treated ag & one-valued function.

Since log Iz x (1f#)] = Jog 1 — 2nim,
log = +- log (12} = 2nimr
and so log (— 1) 4+ log (— 1) = Znim,

where # is zero or ap integer.
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The last equation simply tells us that the sum of any two
vaines of log (— 1) is zero or an even multiple of in. This is
, because the general value of log (— 1) is an odd multiple
(see p. 36).

L ﬂ‘e given argument, the first equation asserts that log 1

iz 4220, which is only one of an infinite number of possible

3 i: in the deduction from the next equation it is assumed

‘i';he value of the logarithm of — 1 which is on the left is the

¢ ay that on the right. All we are justiﬁed in concluding,
1+ the statement log (— 1) = —log(— 1} is that any one

o of the logarlthm iz equal to minus some other valiig:

is true since the values are -L i, -+ 3in, J_ S\ 7

¥ ir is untrue to say that any one va lae is egtta]. to

roitotg itself.

iaw FoNoTIoN . If ¢ and 2 are any complex{mmbem, we
2 a* by the equation )

¢ 0¥ o= exXp (Z loge {l)- x’\\:

Bince the logarithm has an infinite ntutther of values, this
tionl, in general, also has an infinitevhumber of values.

if jeo| = R, if the principal argumentofa isgandif 2z == 2 -+ iy,
then

log, & = log R~+ 3(5 L+ Jnr)

ey, from the definitigy,,, dbrauhbrary org.in
= exp {(z + )[logR -+ i(f + 2nm)]}
== exp {zr log Ré\\yﬁ + Znw) 4 iy log R -|- #(3 + 20w}
where 7 can take,any of the values 0, + 1, 4- 2, - 3, .
AS a particglap-case consider the values of ¢, Since
\logz == (Zn <~ §)im, '
,s\ : ¢ = exp[— (2n -t 7],
wmzre;z = 0, -1, + 2, L 3,. ..
o ~’f'hu=s the-expression hes an infinite number of values all of
Weh are real.

: uenerahzed Circular and Hyperbolic Fanetions, The circular
functions of any complex number 2z are defined by the relations
sin z = [exp (¥z} — oxp (— 42))f24,
cos z = [exp (iz) + exp (— i2)]f2,

tan z = sin gfeos z = 1fcot 2
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eosec z = lfsin 2,
sec 2 = 1fcos 2,

-
where esp (iz} is the sum of the power series X (zzyrfn !
no=1r
On comparing the above values of gin z and cos z with '
exponential values of sin 0 and cos 9, where 0 is real, g
ou p. 32, we see at once that the definitions hold good
z iz real. We have generalized our trigonometry in such a w
a8 to include as special cases the results of real trigonomet;
From the equations which define the sine and costue g
have L\
e08 2 4 1 8in 2z = exp (iz) O

and cosz—isinz = exp (7.’3:,;}“,

whence (cosz - ¢sin 2) (cosz— i sin z) = expl(:iz) .'exp (— e
=€Xp (0),

Lo, cos® z - gin? z &M,

m\J
! (N
It w and v are any two complex fdmbers,
©os % cos v = {fexp (iu) -} exp 6{,—:@’1&)] [exp {iv} + exp (— 5"
== Hlexp [i{u -+ It} exp [— i(u + v)]
exp [i{u— )] + exp [ i(u— 1
= $fecos (u +zq + cos (u— )],
Ll

and www dbraulibrary org.in
S
sinusing = —« ,ﬂﬁézp (11} — exp (— su)] lexp (§2) — exp {— s}
5 #lexp [i{w + ©)] 4 exp [— i(u +- )]
v ud — exp [i{u — )] — exp [— i(u — vih

A</
A= #eos (1 — v) — cos ( 1 v}l
“\:_: 2
:Qdﬁ-ion and subtraction of these results give
O\ ¢
N €08 {16 4 ¢} = cos % cos v + sin # sin »,
AN
<\; “where both upper ar hoth lower signs are to be taken.
In an exactly similar way it can be shown that
511 (% 1 D) = win y oos ¢ =+ sin » cos u.
By division it {ollaws that

tan {x + v) = (tanu L tan 9)f(1 F tan » tan ).
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2se formulae are exactly the same as if » and » were real:
t, all the addition formulse of clementary real trigono-

2
v are valid for complex arguments.
71 e siunilar manner we define the generalized hyperbolic
TLrotions by the relations

sinh z = exp (2] ~ exp {(— )],

cosh z = Hexp (2} 4 exp (— 2},

tanh z = sinh zfeosh 2 —= 1footh 2,
cosech z = Hjginh o

sach z = lfcosh z. )

Jeunn theee definitions it foliows that
AN
{tosh 2 4 sinh 2} (cosh 2 - sinh z) = {exp z{{exp — 2]
= axp (D
1 an cosh? z — ginh®z P~

e addition formulae may be obtam‘&d in the samc way as
16 cireular funetions and are ANV

o/

cosh (1 4 ») = cosh @ (:os}l’?}' -+ ginh % sinh #,
sinh (% - v) = sinh u_aoal v sinh v cosh ,
tanh {u -- 2} “gtdﬁlc} ui‘fbtanh ?})é (1 4~ tanh » tanh v},

rary.ol

otk upper or both lothﬁ‘ signs being taken in each instance.
Ti: z is purely 1maagmacry and equal to iy, where ¥ is real, we
have from the def}mtmns

sm%y = [exp (— y) — exp ()}/2 = isinhy,
4 \coq sy = [exp {(— ¥} + exp (y(]f2 = cosh y,
;\\”’ ginh ty = ifexp (iy) — exp (— ty)] = isiny,
\, cosh iy = n{exp {iy) + exp (— iy)] = cos y.
?’éehce we can express the sine, cosine and tangent of 2 = & 4- iy
\Tn the form A -+ iéB. We have
sin (x L iy) = sin & cos 4y -~ cos x sin
— sin » cosh ¥ -}- # cos zsinh y
cos {x -4 1y) = cos x cos iy — sin 2 sin 1y
= ¢08 z cosh  — ¢ 8in x sinh ¥.
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The corresponding result for the tangent may be obtainad by

division of these results or, nore neatly, thug—
ban (@ - iy} = 2sin (z - 7y) cos (2 —2y)/2 cos (x Fdy)oos (x--iy)
= {(sin 2x 4 sin 2¢y)f(cos 2z 1+ eog Q)
= {8in 2% -+ i sinh 2y)/(cos % -+ cosh 2y),
1t will be noted that al the cireular and hyperbolic funceiicas
havd been defined by means of power series in having\ve.i

coofficients, Tt follows that, if f denotes any one, p:f\_f:-b.e:fe
finetions and fle+dpy=p - ¢}, where P and ¢} apeyeal, then
flz—1dy) = P i0Q, whenes A
e il = 24 g = flo 4 i) 0,
%
The application of this principle often give;’\ very neatly ifhe
‘modutug of a function of this type. Thup,
Jsin & + W) |2 = sin (z - iy:}i\\tiﬂ (@ — iz)
= }{cos Zig~> cos 2x)
== {{cosH 2y — ¢os 2)
= coshi®y — cos?y .o
Also, feos (& -1 ty) |2 ?~,6d§ (& -+ 9y) . cos (z — i)
. = Heos 2 4 cog i)
LN = Heos % 4 cogh 2y)
\\S\:ﬁ\;,dbﬁ wiobfar ylosirih? y
and {tan 6+ 1y) |2 = (cosh Ay — cos 2e)/(cos Zx—+cosh 2y},

The (torres;ijdhding results for the hyperbolic fanctiong may

be obtained’in a similar way, and aze left as an exersise for
the readgy.

.EDQQ‘IPLE 6. If cos (g .- i) . cosh (x 4. @) == 1, where
e, é: @, y are all real, prove that, in general,
~O tan o tanh b = tanh 2 tan Y. (UL
N/ Expanding each of the factors on the left-hand side of the
given relation, we have
{cos @ cosh b — ¢ gin ¢ sinh &) (cosh z cos ¥ +isinhasing) — 1.
The imaginary part of the product vanishes and 80
c0s a cosh b cosh g cos Y(tanh x tan y — tan 4 tanh &) = 0,

m Hence tanh > tan y = tan tanh &,
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uries: ©O8 & O ¢og y vanishes : neither of the factors cosh b, cosh x
can vanish since the least value that either can have is unity,
FxamPLE 7. If tanh (v + dv) = g + iy, where u, v, &, y are
fnd x and y in terms of % and ». Find the values of u
when ¥ =y = 1. (U.L)

5]

+ oy = tanh (u + @), ¥ — iy = tanh (u — iv)
and = }tanh (u + iv) 4- } tanh {4 - i)
_ sinh (4 4-iv) cosh (w— ) + cosh (w+ i) sinh (w— dv) N

3 cosh (u -+ iv) cosh (v — i) O\
= sinh (u -b iy -+ w — iv)f(cosh 2u + cosh 2v) N\
= sinh 2uf(cosh 2u + cos 2v). AR
Similarly, >

K
3y = 4 tanh (u 4 #v) — } tanh (4 — iv)
= sinh Zivf(cosh 2u + cosh %), AN

o 4
which gives N
¥ = sin 2of(cosh 2u + cos 20). _
. ")
When @ = ¢y = 1, we have N

gin 2U.:>::’i}‘,
tanh (u 4- o) = Tor o, HAAPHRR QoL Ry = 1 — ¢, |
Thersfore tanh 2u — tanhyu + tv + w — )
S[OF ) + 0 —afit + 0 40 @2~y

Also tanh 28e%% tanh (u + w0 — u + iv) |

SO =) (L= YL — (46 (1 — i)
, A =—2,
Le, T tan 2y = — 2,

Wheucg'r;{,\é}; is in the second quadrant and
4 v = {{nw — tan -1 2),
whera =+ 1,43 F85 .... .
Since tanh 2u = 2{3, » and sinh 2% must be positive. From
the identity sech? 2u = 1 — tanh? 2u, we deduce that

cosh 2u = 3/4/5 and sinh 2u = 2/4/5.
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As exp (2u) = sinh 2u + cosh %y = +/5, it follows that
_ u = { log, 5. :
Exaurere 8. If log [cot (& + )] = w — iw, prove that

coth ¥ = cosh 2y sec 2x and cot v == sin 97 cosech 2.
Show that, if & lies between — im and im, v les in the sz
quadrant as arg (x -i- ).

From the data,

oxXp (# — 10} = cot (& + 4y) and I\
exp (¥ 4 ) = cot (z — iy), A o
¢\
therefare e\
exp (2u) = exp (u -+ fv} exp (u— iv) A

= 008 (& -} ig) cos {x — 'iy);'siu/(a!}}— ty) sin (w0t
&/

= (cos 2z -} cosh Zy)f{cosh Q> cos 2z},

Hence ¥

coth u = [exp (2u) + 1iflexp (@fw— 1]
= cosh Zyfcos 2z N
== cosh 2y sec 2. (0
Again RN
exp (2iv) = exp (u jf;i})j/ex_p {1t ~ v}
=50 (TR bel forks b5 (v — i) cos (s )
= (8iR 2% -+ ¢ sinh Zy)/(sin 22 — i sinh 2}
and  cot 2w z(’{{e&p (4w} 4 11ffexp (2iv) — 1]
A5 20 sin 2xf(24 sinh 2y)
&)= sin 2 cosech 2.
We ribiv have to show that, if x ig a positive or negative acuiie
anglé, the angles v and arg (z -+ iy) are in the same quadra:.
SNOw exp (u — iw)

:"\‘.:;; = o8 (z + 1y} sin (2 — iy)fsin (z -+ iy) sin (x — 1Y),
\”\ * whence exp (1) (cos » — i sin v)
= (sin 2z — 1 sinh 2y)f(cosh 2y — cos 2x),
and, equating real and imaginary parts, we have
eXp {u) cos v == sin 2xf(cosh 2y — cos 2z)
and  exp (u) sin » — sinh 2yf(cosh 2y — cos %)
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© (@) 1s posifive, since w is real, and (cosh 2y — cos 2z)
sinee cosh 2y cannot be less than 1 and cos 2a
eed 1. Consequently, cos » has the sams sign as
tsin © has the same sign as sinh 2y. There are four
considered.
I arg (#"+- 4y) lies in the first quadrant, both x and
wative; sin 22 is positive because 2z lies hetween 0
and sinh 2y is positive. Therefore sin v and cos » are
tive, and the angle v is in the first quadrant. y

If arg (x 4 4y) is in the second quadrant, then 2a
e O and — # and sin 2z is negative, while ¢ is positive,
e ¢ then has a negative cosine, a positive sing.and
liss in the second quadrant. g N
it VWhen arg (@ + dy) is in the third quadradf) e lies
i iand — 7 and sin 22 i negative, while y asfdtherefore
are negative. Since sin v and cos ¥\gPe* now both
2, v is in the third quadrant.
¢ v, IF arg (x + 4y} is in the fourthygpladrant then 2
2on U and =, sin 2v being positive, while sinh 2y is
‘therefore cos v is positive dudsin o negative; thus
he fourth quadrant. RO
LE 9. Prove that the most general value of sin—1 4 is
w4 ¢ log (4 + 4/15), sltere m is an integer(%f ze)ro.
z = 4, cos ¢ 2PN EGFED = cos 2 + i sin 2
+/18)e. from whieb. we have

7z =Yg [(4 4 +/15)i]

o2 log (4 L 4/15) + log
LO7=log (4 £ v/16) + @m £ B,
ceenuse thelgeneral value of log ¢ is the principal value plus an
even mulfiple of #i.

Sipest (4 1 4/15) (4— 4/15) = 1,

\‘:" log (4 -4 4/18) = — log (4 — 4/15),
and we may write the result in the form

z = (2m + L= 4 {log (4 + 1/15).

ExamrLE 10. Resolve 227 4 227 cos 6 + 1 into real quadratic
factors, » being a positive integer.
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Hence show that

n—1
coshng - cos nf = 2117 {eosh ¢—cos {0 + (3 Lymfn]
r=o ({71

The given expression may be factorized in the form
fz" 4 exp (zn8)] [a» + exp (— inf)]

and therefore the zeros of the expression are the rosts of the
equations N\
2 = — exp (inf) = exp i(nd + ) N L

and T = — exp (— tnf) = exp 5(— nh ~\‘\

These roots may be obtained by giving r the wilues ¢, ¢, 2, 3,
+ - 0 exp [0t (3 + 1)mfn] and exXp i — M- {2 - ],
The product of the two Linear factors whick corresmond to a

given 7 js \V

{z--exp [0 + (20 + Lymfn)} {x—'c;ﬁw}:[ — 8 — (2 - Dafa)
== 2% — 2 cos [# -+ {203 Tymfn] + 1.
Hence 22 - 2a% cos nf - 1 O

n—1 o *, W
= Ho{a:ﬁ_. 22008 [0 + (2r + Vfn] - 1
Fe= RS
\arW\ar_dbréUIibl'ary.ot'g_in

Divide by 2a=, put (%= exp ($) and it follows that

cosh ng -+ 00&\718——: 2n“1nﬁ1{cosh $—cos [6 4 (2 - Dy fulh.
>N *r=0

N\
N’ EXERCISES
I\'EEXPNSS the following numbeps in the form r{cos § — i sin y—
O 0 (1 +4y3)08 — i8) and
N (il fexp (@ + ) }ltan 6 ¢ ]

YT 2. Bhow that, b i 9 7
\./ ¥ & proper choice of 4 y Aet? o Ba8F oan
\\; be made equal to 5 €08 26 — 7 ain 2g. and B, 4% 1 Be

3. Prove by de Maivre's theorem or otherwise that

cos? 6 1 gint g {1/64) {cos 89 + g cos 48 - #5).

[N
4, E_xpress $IN° 2 oy g ip terms o
4. Find ‘the regl Quadratio faeg,
. Obtain the three rogl quadrs

of sincs of muléiples of x4,
15 of o — dat oL 16,
tie factors of 4+ Sa® ooon4,
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n—1 .
7. Bhiow thab sin n =~ 271 gin § I [cos # — cos {r=fn)] and that
=1
. f—1
# 8in @ —~ cosec nf = T4 flcos @ — cos {rafnil,
el

A= (=1F -1 gin® (rafn). (7L
how that

8
mn i 4- 10 = (@n + 1) sin 813 {1 — sin? 9 cosec? {refi2n + D]

7 (U.L.)
ir. Zhow that the roots of the equation (2® — a?)® == (2aa)" are N\
alet™ i L i 12 cos (Srmin)ll, A
=0,1,2 .. .0n— 1. o
By ¢ are teal and o + B2 > ¢f, prove that .\

¢ eos {2swfn) -+ bsin [2enfn) - ¢} = — £ 118 (cos ngﬁ' ::}cos nf),

&
whare v = + /(g > B, rcos ¢ = a,rsin ¢ = b, cﬁg\ﬁ =
o ’ (r.ry
1. Bhow fhat £ ne”=1 cos {(n — 1) A\
n=1 g ;\
{1 — = cos 8)® — 2 gindg "
{(1—2xcosh or x?}*‘—’ _
2. iffa=coed +isind,b = cosaB¥ isinB,¢c = cos € + i sin C,
express Lieos 34 + isin 34) sin (B <\C) in terms of a, b, 6.
Deduce or otherwise prove that ™
Z cos 34 sin (B ~Q)th 508 biarty Br. i) I sin (B — ©)
Zein 84 sin (B — C)~gin(d + B CY I sin (B — C).
A\ {(U.L.)

1. If cosh (% -+ iv) —'\émi {a - ib} prove that
cosh 2w - con va_ 2{cosh 24 -— cos 2u)/{cosh 2b 4- cos 2a),

14 Prove that thé'iogarithms of the ratio of two conjugate numbers
are purely imagma}t'y.
15, Give a/d¢finition of #* valid when a and z are any complex
numbers.  \W
Are th \f(;ﬂowing statements consistent with vour definition?
N )V (1 — iy — avey @y ittt i — — }, (DLLY

1#NPind, in tcrms of the moduius and argument of a, the moduli
M arguments of g+,

#how that all the points which represent the values of 2% lie on a
straight line through the origin, and that all the points which represent
the vahies of @® le on a circle, a being complex and x and # being real.

17. Prove thatlog [sin (# + iy} cosee (2 — 1y)] = Zitan —1{tanh y cobx).

18, If p = a + ib and g = o — ib, where @ and b are real, show that )
(i} pe® - ge? is real; (ii} log tcos g sec p} is wholly imaginary and has
the value 18 guch thaf tan 6 =~ sin 2a sinh 2bf(1 - cos 2¢ cosh 26).

(UL
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19, It 2 + 4y = cos {u + iv), prove that
(1 + 22 4 y% = (cosh v + cos )
and (I —@P + 4?2 = (coshv — gog W,

If2 = cos # and ¥=shm8{0 < f =), find cos u and cosi,
of cos 10 and sin 30, justifying the choice of signs when
are taken,

20. If % + 4y = ¢ cosh (@ -k i¢), prove that

2% sech? § L o2 gagoch? § - % and a? so0® § - ¥ oeosaet g o e

21. If cos (u + fw) — 6%, 4 and » are real and v 35 posiis
that 4 = {3 — Hrande = log, [2 cos {mf12)],

22, If sin (1 4 i) = r{cos 0 - i sin &), find the numerice N
r and 8. L™

23, Show that the equation z +aeotz = 0, whore & }
positive, has no complex roots and only two purely Ithaging
and that the modulus of eack of these is greater thane. ™

24, Ifygin o — o sinh y, show that 4 and y ca.nx_[g@; bBoth beore L fnd
non-zero, 2\

Show that the equation tan z = e, where\Jvis real, can
complex roots and at most two purely im aa’n@wy roots, this o
when % lics between 0 and 1. e \d :

25. Prove that the equation cot 2 £ Rer,
o roots of the form o - 5, where a a»n}b
zero, and {ii) tha, if & ig positive, all fEsyraots are real, i

B eot™ & = M08 [(2 4 i)ftw — )
is egqual to a value of the oth:e:t-‘ side. L

#7. Find the sum of @W@iﬁﬁﬂe@&an@in % sin f 4 3a? sin 25 ¢

+ #a gin 3o sin 3pT L *When 2, o,"8 aro real and x| =1,

28, If nis a posit-iivE,\integer, praove that,
(™ ﬂ
cog 2n6 ,=\(¥ 1y If | 1 - ©08% 6 sac? {(2p _ 1)17}4?1,}].
L ) Fao=i

s (G5
AN/

29. Obtainthe real quadratic factors of (2™ 1y 1 } where 1 is

a positiy{é:i toger,

Prove.that
S .
JSioh (20 + 1)6 cosech § — g7 T cosh 26 — cos {2enf(2n L 1)}].
N k=1
~\J (U1}

\ )



CHAPTER IV

SCTIONS OF A COMPLEX VARIABLECONJUGATE
JIONE—CAUCHY’S THEQREM—CONTOUR INTEGRALS

rptex Variable. If z and y are variable real numbern,
{= & + iy} is called a compler variable.
¢int /*, which represents z in the Argand diagran,
y position as x and y vary: if both x and y vary, ¢og-
s from g, ¢, tO 2y, 4, vespectively, the point P deSsrlbe%
aous eurve in the z-plane from Pythe pomt % - dyp)
fikie polat &y - f9y). N
sth @ and ¥ arve finite, 2 is said to be finife®/if x and y
both finite, z is said to be infinite. Clearl? the modulus
inite number is also finite and the numl{ar is represented by
which i3 at a finite dis- )
from the origin. \’ g

¢

nointa P, P in the z- plcme Y P!

o connected bv an infinite .\ .~ of
wr of paths w hich lie in the Pla)
. Consequently, if z varios 0 gz

sminuously from 259 Arl)isea T
nEsary 6o specity the\path of
tion, ie. the p&bht along

g rcpmﬁbrit{\twe ])(}mt

WY Ik
b z,‘ ajg
i Pl 00111(,1de Wlth F,, the Ve, 14
path becomes.d closed curve or
contour. fedentour is said to be simple if, like a circle or ellipse,
it has mbemultiple point. An example of a contour which is
v mmkhe is o Ggure of eight.
Hippose that a point z (Fig. 14) moves once round a sxmple
((N]‘ttmr (! which does not surround the origin; then it is clear
ham and arg », measured by the amrrle between the real
X183 and the vector z, vary contmuously and both return to
their original values. But if z describes once a simple contouar £’
which surrounds the origin, |z| varies continuously, and returns
to its original value, while arg z varies continuously and returns
fo its omgm&l value -~ 27 according as the point moves round
the curve in the trigonometrically posrowe or negative sense.

47
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Let P, which represents z, and P’, which representy z 4
be two neighbouring points on any one of the paths -

connect Poand P,. From the vectop equation PP — 05 _ §j;
it follows that the vector PP represents dz and the langth
of the chord PP’ ig equal to |8z, whence the length of
infinitesimal element of age is [0z] and the angle betys
tangent to the path at p and the real axis ig arg dz.
Functions of a Complex Varighle, Suppose that #{=
and w{= u %) are two complex varighies which are g -

) w=122 oruy ~+ dw =t gt L Mgy

(i) w = exp {z}, or w + ¢p = eXp f&)fcos y 4 i sin ¥l
(i) w = gin 2, or 4 - v = sin alcorh Y+ icosxsink g
(iv) w = 2], or w 4- = \/(xiﬁli ¥

(V) w = the conjugate of 2201 4 4§y = 5 __ iy

jlt fx‘vcrill Ee obse;'v?ld thatiin each case, ¥ and v are thermselves
Teal Tunctions of ¢ 8 1 agighles 2 and 4 when it is
desired to Mdicéﬂ\%}sﬁgwagsggigicigy, we shall ?J;rrite ther in
the forms u(x, ) 'a:n&* v(z, ).

We shall asgn’e thet both « and ¥ are continuous and
d;ﬁ'erentlable' With respect to 4 and y, Consequently, if z is
glven a smail Increment gz — g, + by, the corre}sponding

It is;‘cgm’venient to represent 2 ang w by points in two Argand
diagrams which we shall eaff the z- ang w-planes re;pec-
bively: The point p (¥ig. 15) represents » and @ represents the

'pgnrequndmg value of 4, On the aSSumption that 2 and »
{_are continuons fanctions of and ¥, it follows that, if P deseribes

\* . .
/A confinuous curve in ghe z-plane between two points P, 2,
n the w-plane between

then @ describes 4 continuous eurye ;
the corresponding points & Q. '
We shall now consider the relation begwe

in z and the corresponding inerement iy

. . ! w. Suppose first that
only the real part of » 1% varied ; 50 that (represented by P)
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besomes z - dx + iy (represented by P,} and 6z == éz. In
consequence, w becomes w, (represented by €,) such that

Wy = w{z + 5, ¥) + iz + o, ¥l
The vatio of the increments in w and z is then
s

fo ) w400 9)—ulmy) | it + b, y) — o, y))

Sz ox &

and, when dx tends to zero, ¢
Liwit (i — w)fde = (Bujdx) + i(dvfdw) . . . \61\}
How suppose. that only the imaginary part of 2 is 'v;:'iasie;:l;
otz becomes @ -k iy 4 10y, represented by P,\and w
QIES 10, Tepresented by Q. AN 3

2
g, % v*'"f:.\
£~Alane Sy w-ﬁf’a'{e,
O
P@ sz A N©

&N /&
x »:’ - i
N Q;\\/

2
www.dbréﬁlibl'ary.ot'g_in
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¢\
Then wy = wu(z, g %0y) + io(x, y 4 dy), Sz = idy and the
ratio of the incre;:p{.f-pt-s 1
Pos—w) _ 9@y + dy) — i, y) | vz y + o) — v(#, y)

&z ”\_*'\" idy Oy
As &y tendg-to zero,
Limit oy — w)fde = — i(Qufay) + (ovfdyy . . .(2)

»Ifl“\.géneral, the limits (1) and (2) are not equal, the ratio
dfdz does not approach a unique limit as 8z tends to zero,
and it is not possible to extend the idea of a differential coeffi-
cient to perfectly general functions of a complex variable.

It is natural to inquire in what cirenmstances the two limits
are identical. On equating the real and imaginary parts we
have as the necessary and sufficient conditions

dufdx = dufdy and dufdr = - Jufdy . - (3
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We shall now show that, when conditions (3) are s
the ratio dwféz approaches a unique limit as &z apywe.
zero by any path whatever.

Suppose that 2 is given a general inerement and becons

2+ Gz = -L dx + iy + idy
and that, in- consequence, w becomes
w o bw = ux + dx, ¥y + Ooy) + e + dw, y + dy)
= u(x, y) -+ 1oz, ¥) - wdr + o,y + v, +\ N

O
EY A
where wo have expanded by Tayior’s theorem, repdinis:

terms of the first order, and where suffixes denete ;-

[P R}

derivatives (thus u,, stands for dufox). KON
Hence, as 8z — 0 and 8y — 0 independn\nﬁy, the .00 of
dwfde is )

[(aey - dv, 30w + (u, - ifvy)éy}ﬁém -4 18%)
= [{e + 000 -+ (— v, + WGyl (Se + isy)
== 1w, -+ i, N\

== Yy — tU,, using conditions (3).

Thus when conditions:¥3) are satisfied, Suwfdz tends to
unique limit as 8z tend§ibo zero in any manner: the v
the limit js defttivd 88 BE M W FoRMlial coeflicient or
of w with respect 40,2 and is denoted by diwfdz. The Fu
w 1s said to begmonogenic, '

In future, we shall apply the term Junction ouly to monoiretic
functions : -for’ those which are not monogenic arc of no
ticular iftterest in connection with the complex variabiz on
may b&atlequately treated as a combination of two fu:
of {%ei\{:éal variables x and y. '

: sider the functions enumerated on P48, In()u=a"—p®
Jaid v == 2uy, whence Uy, = 2z = v, and w4, = — 2y ==

peal

ions

&

Y . . . Y ; (2
L The function 22 is therefore monogenic and its derivate is 22,

. Similarly it may be verified that conditions (3} are satisficd by
(i) and (iii). In (iv), # = V{a? -+ 42, » = 0, and the conditions
arc not satisfied. Again, in (v) 4 = 4, p — _ ¥, U, = 1, and
vy = — L. It follows that the modulus and the conjugate of
z are not functions of z in the sense defined above.

Conjugate Functions, If » 1 5 — fl& + i), where f(z) is a
function of the complex variable 2, 1n the sense specified above,
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«d w are real functions of the two real variables x and ¢
a ¢ called conjugate functions.
vartial derivates of w and v are connected by the

_E_}_u, U Ju ov

% Ty My T W
frere wwhich we have, by partial differentiation,
Fe Dy P o v %
el T B T T W 5y = @y (O
I¥ woiiiws that both  and » Sa-t-isfy the equation (,,}.‘ N
2 +¥0)

ix Laplace’s equation in two dunens;.or}a,
wtion ocours constantly in mathémasical physics.
ing down any function of Aand separating out its
¢ Tmaginary parts, we obtains Jmmedla,tely two solutions
differential equation. Ib(Ns' obvious then, that the
of functions of a 0()mplex Variable must be an invalu-
1 towards the solut%}a(&fl E’F‘QO dlmenmonal problems in
nematical physics. A
fopsiruction of a hmotion which has a given real or
wsry part. Itis cmsible to construct a function of z, which,
for its real or imaginary part, has a given rcal function of
and y, only svhengpitat given function is a solution of Laplace’s
synation.

it l‘f) isa f\an\etion of z, we denote by f(z) the function obtained
fronm: it b ¥eplacing every constant which oceurs in it by its
eonjugads number, the variable 2 being left unaltered. De-
notr& &8 usual . the conjugate of z by 2, we see that f(Z} is the
tonjugate of f(z}

hag, if flz) = (1 + )z ¢ = (I -} )& - iy) — 7
= -yl + ey + ),
then Foy = (1 -z —~ & = (1 — e +iy) —i
=@ +y+ily ~x—1)
and FiEy = (1 — )2 —i = (1 — Dx — iy) —
(& = y) — iy + 1),
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In general, ot
J@&) = ulz, ) + iow, ).
Then, since
=4+ 2andy = — 3z — 3),
f&) =ullz + 2), — dile — 2] + (b + Z), — 3z — )]
In this identity, 2 may be given any value. Putting Z = 2, we
have

fle) = iz, 0) + iv(z, 0) . . L)
Thus any function of z may be expressed in the form O\
Az) + ifylz), S )\

N

where f,(z) and f,(z) are real when z is real,

N

If we put Z = 0 in the above identity, we hafvg

F6) = ulle, — 4iz) + dv(de, .~ ). - (@)
Further, if \
) = ulz, y) + dviw, y)
then J&) = i, y) — ENT

since % and v are resl functions of %nd y. Hence
“ Y) = 31E) + 70, o) = — Hf) — Fiz)),

8o 2 + @] e + 2, — b — I ()
U IS e ke E W ) g

By inserting in eig}!l‘é’;-\!({)) or (e} a convenient valus of 7 we &y
be able to determingf{z) when either « or v is given {as a real
fanction of # andsg) which satisfies Laplace’s equation,

Putting 7 =0y we have

fey = 2u(dn'& fiz) — J10) = 2uldz, — jiz) 4+ constant,. {d}

Jz) = 2ivln] — }i2) + fl0) = 209(32, — 32} + constant | {e}
If thé\ir—;lues of u{3z, — 1iz) and v(}z, — Liz) are determinate,
wo fan use (dj or (¢} to determine the function f(z) (but ses
HExample 3 below).

'"‘;( - )EXAMPLE L. Take u = 22y, which clearly satisfies equation

4). '
From {d), f(z) — 4(§2)(— %iz) + O = — j2 + C,

whers (' is a constant.

Hore, J@) = — it — ot siay) 4 0

since u = 2uy, O is purely imaginary but otherwige arbitrary,
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Examrre 2, The function v = exp{x) cos i satisfies Lap-
lace’z syyation; using (e), we have :
Jfz} = 2¢ exp(§z) cos (— Ldz) + 0

= 2 et  cosh §2 + C

= g{e* + I} - O\
This hiws « for its imaginary part provided thati -+ ' is real;
80. f{z) = I exp(z) + 4, where A is a real arbitrary constant.

Examwrin 3. .
I s — = [exp {y) — cos x + sin z]f[(cosh y — cos )]
and fi:/2) = (3 — 9){2, find f(z) A
Now if #+iv= f(z), i — v = if(z) ‘ “
and (=) +ifu + o) = (E+O)fE).

& =u —vand V=u-+9v are conj gaté functions,
real and imaginary parts of (I 4 z\} (2} = Flz), say.
Sm_\;u f¥ing the given expression for (", we have

Mo, ) = I -+ [(sinh y + sm x)/ cosh ¥y — cos )]

If we 1 epiace  and y by §z and — az respectively, the denom-
inator o7 the fraction hecornes O

cosh 2 — cos(wwpbmahﬁshaé@.m'mh jz =

80 we cannot use (4). 'im!\ _

Frem (b) F(z) = 220G+ 2L, — #ilz — 2]} — F(a).
A convenient value@or Z in this identity is =, and this gives
‘2—s,mh 3z —w)Fsin z 47
Fle)=2 - F ("‘) ™ [[coah i(z {_ ) itos 1(3(+t)] .

= %\(I + t} cob §z

It follows thatf ='C" + cot 3z
mh&eohstant ¢’ is found by putting z = 1w, which gives

N B—i2=C+Land ¢ = (1 — 2.
The required function is therefore cot 3z + {1 — ).

The Curves « — Constant, v — constant. If
% -+ v = flz -+ 1),
where f(2} is a uniform function of 2, the conjugate functlons
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are single-valued functions of x and y and therefore, throvs '
a given point z, (= z, - iy,) in the z-plane will pass one
only one curve of the family % == constant, and one and on
one curve of the family ¢ = constant, the equations of thsas
curves boing

u(@, y) = wlwg, yo) and vz, y) = v(zy, yy).

For cxample, if # 4 v = (x 1+ iy)?, the two curves are the
rectangular hyperbolas «* — 32 = #,2 — 4,2 and TY = Tl

It is convenient to refer to the two families of curves the
u-system and the v-system. ’ \:\

Suppose that (z, y) and (x - 6z, ¥ + dy) are the gocordinates
of two neighbouring points on the curve w == QQI}‘S}LTant. Then

ww + O,y + dy) — ulz, y) 30

and, retaining only terms of the first~efder we have, on
expansion, RN
b -- uyégf{ tv\*_ &,

whence it follows that the valud\of dyfdx at the point (x, ¢},
Le. the gradien$ of the curvelat the point (x, ), is equal o
- 1‘!"ﬁ'h";s.r' .~ ;

In the same way, the gradient of the curve of tho pesysiem
through the poi%{&,&){_ﬁ'ﬁb%@m. in

The product of the'gradients of the two curves at their
point of intersecpiijiaa\ (%, ) is therefore

um@x[u,ﬂ}-n—_ — 1, since %, = v, and 4, = ~ v,

and we ha¥e’ the important result that curves of the - and
v-systemghintersect at right angles.

In dpplications to electrostatics and to the theory of gravi.
tgt@’&sﬁ,] potential, the two systoms of earves are the lines of
force and the equipotential lines; in hydrodynamics they are

'f{ihe stream lines and the velocity potential lines.

Bxamris 4. If o 4 4o = e = (x—ig)f(x® - 42, the
u-systere is given by 2+ 4? = 2kx and the v-system by
¥ + g = 2k'y, where k, &’ are arbitrary. These are circles
touching Oy at O and Oz at 0, respectively. Hach circle of the
fivst family intersects orthogonally every wmember of the
second family.

Exavere 5. Ifu 4 ip == log z, then w = log r and p = arg z.
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ur¥es % == constant are circles with their centres at the
#nd ¥ == constant gives the family of straight lines
from the origin and cutting the circles orthogonally.
NDITION THAT A GIVEN FAMILY OF OURVES SHQULD
- OR v-SYSTEM. The curves given by the equation
% «ub have the characteristic property that « satisfies
cquation in two dimensions. But the equation is
saily the simplest form from which the family may
ined : forinstance, in Kxample 5 we have the equation
cles in the form log r = constant instead of in one
> simpler and more usual forms r == constant ang)
* -= constant, in which the expressions on the left-hand
» not golutions of Laplace’s equation. N
congider then in what circumstances a famil,y:af curves
N

Flx, y) = constant
$ # \\ :

W

is viouregsible in the form
@ = constanb,\/

# satisfies Laplace’s equation.
1 & reduction is possible, it clear that u must be some

of Fiz, y); for, when 3z, y) is constant, % has to be
. www dbraulibrary org.in

&

u=g¢(F). &

! we = P(E) B Uy = " (F)FE 4 $'(F) . .,
axicl wy == SIVF,, u,, = ¢ (F).F 2+ $(F). F,,
O e + 0 = 0,

v have Y (PR + 08 + §(F) (Foc & P = 0,
e (B ok F(FF+ B2 = — ¢ (D) (F).

f.liisa’éﬁl':ression on the right-hand side is a function of Fonly
ard so the required condition is that (¥, - FoF2 + F.2
shall be a function of ¥ only. When the condition is satisfied,
¢ can be found by integrating twice.

Examrre 6. Take the concentric cireles given by F{x, y) ==
#* 4 y*= ], where 1 is a variable parameter.

Here (Fo, + F)J(F.2 + F2) = 44 + y*) = I[F
and " (B) ' (F) = — 1.
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‘This gives log $"(F) = ¢ — log #
or ' ¢'(F) = AfF
and “=¢(F)=Alog ¥ 4 B,
.We have then v = Alog {z* + 42 + B,

where A, B are arbitrary constants.

Laplace’s Equation in Polar Co-ordinates, If r, ¢ aro the
polar co-ordinates of a point whose cartesian co-ordingtes sre
@ yhe=x4dy=r exp (¢0) and we have O

%+ = flz) = f(r exp i), O
where %, ¥ are now expressed in terms of 7, B, Iﬁffei’en‘-’;iat-iag
partially with respect to r and 6, we have
Uy + W, = f'(z) exp (1) (O
and Uy -+ 1v, = f'{(2)ir exp {i6) = ﬂ'r(d:?—,L w,).
Equating real and Imaginary partsx.@e.‘ﬁnd that
U, = (,)fr and u9¥-— ro,,
Since  (3/36)u, — (3fryu, =L,
and  (3f20)y, = (3o p,,,

we ha've (?)39)/?' = ?9;':-}"'?“‘?),-” or 'U,,.,. + (‘b‘,.)]?" + (1?06}/?2 =0
and  — Wﬂﬂ‘l&i‘?dﬁ%&ﬂﬁi%m@é‘r@am+ (M -+ g — o

{6}

Thus « and sv*sgtisfy the same partial differential equation
which is, in"{act, Taplace’s equation expressed i polar
co-ordinates.)

As befaore, the curves 4 — constant, » = constant ont
orthogonally, and we may apply the method used on p- 55 to
findetbhe condition that the equation F(r, 6) = A, in which J is &
vatiible parameter, should give a u-system,

\"\We have to find the condition that % — §(F) satisfies La-

5 Place’s equation,
"

\‘:

Now U = ¢'"(F). F,, u, = ¢'(F). F,
U = $"(F) P2 L 4(F) . P,
Ugp == @'"(F) . Fo? $1F) . Fy,
and, on substituting in equation (6),
SUE) (B2 4 F ) + go(m) Fer + Fofr + Fopr®) = 0.
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‘ihe sondition may be written
o Fofr o+ Fof )(F2 + Fdr) == — ¢7(F)f$'(F)
= & function of ¥ only.
the condition is satisfied, ¢ may be found, as before,
ting twice.
2 7. Bhow that the equiangular spirals
7 == kexp (f cot a)

e Le a family of stream lines, where « iz the same for all the
and k is 2 variable parameter. O\

e, we take F = rexp (— 6 cot &) so that the equatwﬁ\m

=sten in the standard form F = constant. ~\

Then F, —exp(—fcota) = Ffr e \
and Fy=—rcotaexp(— foota) = — Fbo\t o,
whence o =0, v
and Fog = 7 cot® w exp (— 6§ cot «) %,K‘c})t-z o
Thus LFo - (Ffr) + (Pl U TFEANE ol

= [F 4 F cot? alf| F2 + W2 cot? 4]
= 1}F,

which ‘:i’l(}ﬁS that #(¥} can be found”n-o as to satisfy Laplace’s
equd.IOL, i.e, the splrals mﬂbl auh@} family of stream lines.

We have bl ary-ore-
S E fi“f\ —/F, *
whenue c;b\@ = AfF
el (W)= Alog ¥ 4 B
where 4 and B apd }ea] arbltrary coustantq
Thus « ﬁ,gé&" A(log r— B cot o) + B,

It iz easily 4%{1 that « is the real part of the function

w = Alogz+ ({4 cot o} logz + C,
whafe v’” is a complex constant. The imaginary part of this
fuzz%an is given by

v==A86 + (4 cot a}log r + D,
where D) is a real constant. The orthogonal set of curves is
given by v = constant, or, more convcmently by

exp (v tan «fd) = constant.

These are the equiangular spirals » = & exp (— 0 $an ).

3—{T.izz)
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Level Curves. The locus of g point z whick meess iy thie

plane of the complex variable z so that the modu

Ins of = Sraetior

J(z) remains constant is defined as a Jevel cupve of {2}, The

equation of such a curve may be written in the
o) =,

where M is the constant modulus. By giving M all vsiue.
2010 to - ® we obtain an infinite number of curves, 3.
one and only one of these passes through any given

the plane.

form

Exampir 8. When @) = 2z — a, the level curvedzore circleg

having the point z = ¢ ag their common centre,.

7

ExampLE 9. For the function (z — a)/(z.-'A- B), the level

curves are coaxal circles having the points™s = a, :
limiting points. The point-circles of the, systern ave chla

by giving M the values zero and infinitgy

Examere 10. Tf f2) < exp (2, FBNE exp (2) and the lovel

carves are the straight lines » = o M.
Examere 11. Taking f(z) = 93@1{’23 we have

f#)]* = sin (395} sin ( — iy)

= {cosh-2y — cog 2z)[2
and the level curves are.given by

\arW\ar_d%?%tj!'?&'a_r‘ﬁﬂgﬂ?\ = 2M?,
where 4 rangesfy\{,m 0to -+ .,

Since cosh 2 ahd cog 2z are both even fanotions, tke carves
are symmetrical about both axes of co-ordinates. Alse, since

€08 2z is petiodic, it is sufficient to trace the o
in the sthip bounded by the lines z — -+ nf2,

urves which He
If M doss not

exceed whity, the curve meets the z-axis where sjn 2 — - M,
othergvise the curve does not meet Oz at all. When o vasishes

ave M = [sin gy = 4 Sinh g

» According as y is positive

OF negative. Thus for all values of 37 the curve meets 9y in

~*two points equidistant from the origin.

Consider the curve for which M — 1. [y equation may be

reduced to the form sinh ¥ = 4+ cosz.
The curve passes through the Points

(£ #/2, 0) and (0, 4 log (1 4 /9.
At each of the first 4o points it hag a node, the tangents

at which make angles of 74 with O,
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i Fig. 16 the form of the curves is indicated. When M is
than unity we have & series of ovals with their centres af
ooints (nar, 0), where m = 0, -+ 1, + 2, .. .. When M is
i 40 unity we obtain a curve which cuts Ox at the points
¢ % is equal to an odd multiple of #f2. For values of M
or than unity the curve is in two distinct branches above
wetow the a-axig,

WRW g,IIc (I:éilf hi brary org.in

2\Y
UxameLy 12, I f(z) £4an 2, we have, as on p. 40,
[f(2)]* = (cgsh 2y -- cos 2x)/(cosh 2y - cos 2u)
aud the level curye{f(z)] == M is given by
cosh 2y =4 cos %,
where ’xc?": (1 + M1 — M),

Ag in ’;.]ﬁhe previous example, the curves are symmetrical
aboup~both axes, periodic with respect to x, and need only
be@%&ced in & strip of width 7. We shall take the strip between
theMines # = — =f4 and z = 37/4.

When M is less than unity, a is positive and cos 2z ean take
ouly positive values since cosh 2y is positive for =1l real values
of y. It follows that = lies between — =4 and - nf4. The
curve meets each of the axes in two points and is easily seen
%0 be an oval with its centre at the origin. When M = 0,
the oval reduces to & point.
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If M = 1, the equation reduces to cos 2w == 0, whick pives
the straight lines x = + «f4, & 3=f4, efe,
When M > 1, cos 2r can take only negative valuves and so
z lies between =f4 and 3af4. The equation of the curve can
be written
cosh 2y = o' cos 2z — =f2),

where o' = (1 + M'J(1 — M'%) and M’ = 1/M. The

¥

O Fie, 17

already been considered. Each has its centre at the point
(wf2, 0). When M is infinite, M’ is zero and the corresponding
oval reduces to a point,

The plane is thus divided by the lines z = (20 + 1)af4
into strips in which [tan 2] is alternately less than and greater
than unity: on the lines, {tan 2| is equal to unity (Fig. 17).
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Whe Surface of Moduli. Suppose that, from the point P,
ioh represents z, Pl\ is drawn perpendlcular to and above
-planc such thet PN — |[fiz)]. Then the points N lie on
«e which may be called the surface of moduli. The level
of the funetion f{z) arc contour lines on this surface,
¥ are the curves of intersection of the surface by pldnes
I to the z-plane.
i'or z itself, the surface is a right circular cone of which the
I angle is a right angle; for 22 the surface is a paraboloid
Iation.
» gurface for the function tan z has an infinite series of
“ows and pedlm The lowest points of the hollows are @’
points z == nm on the z-plane, while. the peaks whigh\aro
tely high, are above the points z = (n + 1)m, “}1@'9 n is
teger or zero.
iiicse surfaces may be used, as in Jahnke and Emcl‘e’s Tables,
/¢ & pictorial representation of the values df\the modulus
- function of a mmpTex -variable. \ )
i n.-qe Condifion that a Given Function R(x, Yy} should be a
ug. F(x, y) being a real functionNod = and y which is
negative for any real valuo woof @ and ¥, suppose that it is
fae modulus of & function f(z}). o
g anf (z} = F .e™, where a is th&argumcnt of the function
rfﬂlefure is a real fonetlbrawilr andbyg in
On taking logarithms we haye

lovf{*z) = log F + i«
and so log F is the 1'3&-1\;{?»1'15 of a function of z. From the result
o p. 51 it follows that log F must satisfy Laplace’s equation,

LY

(3Y27 JL¥[oy?) log F — 0.

Converse ;“i:f’this condition is satisfied, a function « can be
found (by thé method given on pp. 512} such that log F and «
are conjagate functions. Then

O log F' + iéx = $(z), say,
Wh&u"e F . exp (in) = exp &(z)
and # is the modulus of the function on the right-hand side.

The Condition that a Family of Curves should be Level
Curves. Suppose that the curves given by the equation

G(x, 4) = constant
are the level curves for a funetion f(z),
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It does not follow that G is equal to the modulus of Jiz);
all that we can assume is that | f(2}] is some function of & eo
that, when |f(z)| is constant, @ is constant.

Agsume that
[fz)] = w(@),

It then follows, by the result of the previous section, that
(%2 + 32y?) log (@) = 0.
Now (2fw) log w(G) = Gy (G p(&) A
and (3%/dx?) log (@) .
= (Gt (D9 @)] + [620" (@) 9(G)] — (G (@),
Similarly (3%/3¢?) log w(G) A
= [0 O] + 16,29 (@)@ ~ Iy ()i

The eondition reduces to o)

(Gee + Gu)(@2 + 63 = [y (YHE)] — [ (@Y v (]
= — (@JdF) log [y'(@)fy(@].
1t will be noticed that the right'hand side is expressible in
terms of & alone. The curves\= constant are therefors Joval
curves if (@,, I o HMHEXHEEY is a function of @ only,
When the condition is satisfled, y may be found by integrating

twice. Sl brary org i
" www dbraglibrary org.in
It will be observedithat level curves form g w-gystem: and
that the corresggmfdmg v-8ystem is given by o = constant.

N\
ExanrLe 13;\If & = 2y, Gy -+ G, vanishes and y is given

by
,\::’\ (@/d@) log [ (@) fp(@)] = o,
whence.. ¥(G)9E) = 24
aﬁ%~ w(@) = Bexp (246)

where 4 and B are arbitrary real constants, the latter being

~Opositive.

\‘;

In order to determine the function J(z), we have to find
the conjngate of log WG) = 24ay + log B. From Example 1,
worked on p. 52, it is easily seen thag

log 9(@) + iz = — j4s2 + 0,
where iz an arbitrary constant, in general complex.
The rectanguler hyperbolas ay = constant are therefore the
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level curves of the function exp (— ¢42® 4 ), where 4 and ¢
are constants and the former is real

Iolomorphic Functions. If, for the values of z which are
»sented by all the points of a region § in the z-plane, a
tion f(z) is such that (i} it is one-valued, (ii) its values are
o and continuous, and (iif) it is monogenic, then f(z) is
1 to be holomorphic over the region 8. The terms regular
w59 onalytic are sometines used as equivalent to holomorphic.

Ulearly the functions 2% sin 2, and exp (2) are holomorphic
1 &r any region in the finite part of the plane. A\
#ingularities. The function 1/(z— a) is holomorphic in.dny’
suguen which does not contain the point 2 = . At the peint
# == @, the value of the function is not finite. T
The point is said to be a singular point and 4D
e function is said to have a singularity )

there. : 3

if the funetion f{z) is not finite at z =« \\Q 0
trug 1s such that a positive integer » can be ¢
found so that (z — a)*f(2) approaches a limig)
oiher than zero, as z approaches g, \the
fonetion f(z) is said to have a pole ofrder n 8t the point z = .

According to this definition, 1ffs — @) has a pole of order
anity, or a simple pole, at 2 :‘(ZL:.' 3

Consider the functiol expdidfa)ibvhizkeieholomorphic in any
region which does not copfain the origin. If P (Fig. 18) repre-
sents a positive real v -11{‘& of z, the corresponding valne of the
function is real andypositive and, as P approaches the origin
by moving along the'real axis, the value of the function in-
sresges without dithit. If @ represents a negative real value of
z, the correspéhding value of 1fz becomes large and negative
a8 @ moveslalong the real axis towards O and consequently
exp {1 [z)‘.d(%roa,chea zero. If R is the point iy on the imaginary
axis, thgdcorresponding value of the function is exp (— ify),
which, for all real values of y, has unit modulus. It is clear
then that exp (1/z) tends to no definite limit as z approaches
zero and that no value of n can be found for which 2* exp (1/z)
teuds to a limit in like circumstances.

The function exp (1/2) is therefore said to have an essential
singularity at the origin.
~Since the two types of singularity are of entirely different
characters, a pole is sometimes referred to as an accidental
Singularaty.

Fro. 18
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Curvilinear Integrals. Suppose that x and ¥ are real functions
of & parameter ¢ with continuous derivates dufdi, dyfdi. Then,
as { varies continuously through real values from 1, to ¢, the
point ” whose co-ordinates are (z, ¥) describes a curve in the
zy-plane from the peint 4, given by ¢ =4, to B, given Ly
t =1t. For example, if @ = af® and y — 2at, the carve is xn
arc of a parabola; if x = acost and ¥ — bsin ¢, the curve is
an arc of an ellipse. In the latter case, the complete curve
15 closed and is described once if 4y and £, differ by 2w,

Now let p{x, ) and g(z, y) be continuous functions % hnd
¥. Then the curvilinear integral O\
f (p dz -+ qdy) . O

AR :n;"

is defined as equal to the integral D
\\

v g dy\ N
./!; (P P akfﬁ

where the expression in brackets qu(%r the integral sign ix o
function of ¢, O
From the definition it followd.that

f (pdew -+ q dyg) = — f (p dx + q dy).
4B O BA
By way of HivistAbHIN P48 meae Bake the ellipse given by

“=acost, y=bsint and put p = — ¢, ¢ = 2. Then
¢ 'iu’ [
[;(g} dx -+ @\By) = f ab(sin® 1 + cos? H)df == abit, — t,}.
Jar A\, b

He = ty %97, the value of the integral is 2mab, which is twice
the areaentlosed by the curve. This is a result which is ofherwise
obviguss/sinee (x dy — y d) is twice the area of the olemental
triahgle of which the vertices are the origin and the points
&Y, (@ + dv, y + dy)
¢\ Now suppose that f{z) = « + i» is a function of the aomytex
<\: “variable z = = + {y; then

Jleddz = (w + iv) (dz + idy) = (udx — vdy) + t{ode -+ udy)

and the integral f J(2)dz is defined as equivalent to
AR

'/;B(uda: — vdy) + a'-_'/:l.ﬂ(vdx -+ udy).
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The curve AB is called the path of integration. If the path is
& ciawed curve O the integral is called a contour integral.

The coutour € is described in the positive sense when a
ain who walks round it always has the area bounded by ¢
g left,
a¢y’ Theorem, Llet ¢ (Fig. 19) be a simple contour in
r-plane which is met, in not more than two points by any
it line parallel to either of the co-ordinate axes, Suppose
«he ordinate which is at a distance x from the origin meets <
e points (x, y), {z, y,) and that the tangents which aze |
! 16 the y-axis are the lines z == x,, x — Ty, )

ot ¢,0) \\rw\\r_“clﬁf‘e‘n}.!ibrary.o(@ziﬂ)
AP, 19

/o

O . .
Lit ple, y) bo a funé{k)ﬁ' of &, y which, along with its partial
derivate Ipfdy, is edutinuous at all points within and on ¢.
Corsider the doable integral

\:\\ f f (pldy)dady = I
R

taken ‘Q\}'ér the area hounded by C.
IntGgrating with respect to y, we have

7— f " (e v2) — pla, e

Now let us take the curvilinear integral f P dz, evaluated in
o

the positive sense. Since the contour is made up of the two
Parts ADEB, BEA,
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fpdw=f paw+f pdx
o ADE BEA

= pdr— pdx
ADE AER
= [ tote, 1) — 9o, e
=—1
Similarly, if ¢ and d¢fdx are continuous at all pointdwitnin
and on C, it may be shown that O\

'\

fatw= [ [oaomszty, &

where the double integral is evaluated ov r:i;‘he same ares..
On adding the two results we have thetwo-dimensional fovm
of Stokes’s Theorem

p §

N
Jf (0 ds + q dy) = f [(2gfaad" (3pfay)dady,

where the double integral ig\evaluated over the area bounded
by C. oY

If the contour is met i‘more than two points by lines parallel
to the axes, itwuaydbeasubdividess into areas bounded by con-
tours of the simpler type considered above. The theorem is
true for each ofs'%se contours and, by addition, it follows that
the result js*rue for the more complicated contour. (A line
which forms, a boundary between two adjacent areas will
be deseribed twice—once in each direction—in the contour
integrals} and se contributes nothing to their sum.)

Caiic%:y’s Theorem. let f(z) = u 1 v be a function of =

ich is holomorphic at all points within and on a contovr

\In the z-plane. Using the result on p. 64 and applying Stokes’s
M theorem, we have

j;f(z)dz zﬁ(udm—@dy)—l—z“/;(@dx—i—udy)

= f f (— v, — w,)dady + 4 f f (1, — v,)dedy,

where the double integrals are evaluated over the area bounded
by €, and suffixes denote partial derivases.
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zince u and v are the real and Imaginary parts of a function
we have u, = v, and u, = — v.. That is to say, both
e integrals vanish and we have the important result,

to Cauchy, that
[z <o,
o

ie. the integral of a function of 2 taken round any contour in

3¢ 2-plane, within and on which the function is holomorphig, »

pose that z, and z; are two points which can be connecfed
e paths L and L’ such that, at all points between and oh
nd L/, f(z) is holomorphic. From the above theordm it

03 that the integral of f(z) from z, to 2 by the path L,
' her with the integral from 2 t0 7, by the path &', is zero,
Therefore the integrals taken from 7 t0 2, hy.the two paths

acz squal: in other words, the value of theévihtesral | (=)dz
7, Sy

. the same for any two paths which do-gef pass through, nor
enciose between them, any singularity of the function f{z).

Kational Funetions. A function of the form P(2)f0(z), where
£ axnd Q) are polynomials in z, is gaid to be a rational Sunction
of 2. Tt may be assumed that the numerator and denominator
1o common factpry, ofhermisesrthergxpression could be
viplified by the cancellapioh of that factor.

For instance, the fu}géf;\zons 328 + 2, 1fz, (22 + )f(z2 + z)

ave rational, H\

fhappose that thepolynomials P(z), Q(z) are of degrees m, n,
respectively. 'Lhén,"if m is not less than n, we can divide iz}
it Pz} and dbbain a quotient F(z), which is a polynomial of
degree m —.4{and a remainder ({z), which is a polynomial
of degree,@as'than n. Thus

W\ Pl)Qz) = F(z) + [G(2)[Q(2)],

w‘rmiz‘e\’the fraction on the right-hand side is praper, ie. the
nuwterator is of lower degree than the denominator. If m = n,
the quotient F(z) is a mere constant.

The polynomial @(z) may be factorized in the form

ke—af z—pr. . . (z— o),

where % is independent of z, where @, 8, . . . pare the zeros
and where a, b, . . . rare positive integers whose sum is equal
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to n, the degree of {Xz). If none of the zeros occurs more than

once, the indices @, b, . . . r are each unity.
Clearly, the only finite values of z for which the fanction is
not finite are o, §, . . . p. If P(2) is of degree m, then if = is

less than =, the function hbecomes zero when z becomes intinis:,
if m is equal to n, the function approaches a finite limit 2
tends to infinity, but, if m exceeds n, the function is ivdiniis
when z ig infinite.

Thus the only singularities of the rational function P(:)‘ e
in the finite part of the z plane are at the points a, §;.¢ p._
where it has poles of orders @, b, . . . 7, respestivelya

Using the ordinary methods of resolution into I\a;t?al it
tions, wo may write .\

P@)[Q(z)
= Fle)+ Ayl )7+ Ao ) L LT+ Ao 0y
+ Bie— )+ Byo— ) B8N .+ Byfe— i
+ Bife— )+ Be— fIF 4 RG—)
where F(z) is zero iff P is of lowar degreo than ¢ and Fiz} in &
polynomial of degree m — n»(actuaﬂ} the quotient obtained i
dividing @ into P) if m 1s.not less than n.

With centre at the poiitt «, describe a circle ¢ whose radn
£ i5 less than tsbm\dm’{mﬂibmmna and the nearest of

points £, p, . \ p. Then, within and on this cirele, tic
funetion {
4~ POIQIY Ayl = Ae—a) . . — A on)-

ig holomorphlc and therefore its integral round the cir
vanisheg.)

If&ls any point on the circle, we have z — g— Rexp(ihyand
dz% tR exp (¢6)d6, from which we have

ff." jA z— o) Mz = f id,df = 2mi A,
(]

'\.

fA (z— )y dz= fzne?AgRl—s[exp (1 — 8)i07dd

0

(AR =#[(1— s)] [exp (1— s)if

I
=N |

[l

= A

Il
[

where
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Lhersfore j; P2}z = ./c (P2} fe(z)]dz — Fmid, = 0
[ [P)Q@)]dz = 2mid,,

i gonstant 4y is defined as the residue of the function at
pole a Note tha,t if « is a simple pole, 4, is the limit of
H(2)]Q(z) as z tends to «.

s any simple closed contour surrounding the pole «

110t containing any other pole of the fanction, we can drawd
e { lying within €” and having
autre at «. By Cauchy's theorem,
integral of the function taken
""" is equal to the integral taken

i
' and we can conclude that
stegral taken round a contour
ich contains within it one and only
2 pole 18 equal to Zei multiplied by
restdue at that pole. N
Kow lot § be any closed contoury ,\ Fic. 20

ining within it any number of )"

> uoles, say, o, f, . .. 4, at swhich the residues are A5,
o By Swrround each of these points by a etrele which
ns within it no other pole and connect each of these
23 to § by a path’whrtﬁi‘&ﬂbés atonget any of the other
or paths, as in Fig\20.

‘e Tanction fiz) = P{)/Q(2) is holomorphic at all points of
the rogion betw eex &\nd the cireles and therefore

N PO

when the iQt}é;rd] is taken round the complete boundary of
ihe recl%aa indicated by the arrows. Bach conneeting path
iz desapibed twice—once in each sense—and so contributes
noul{pg to the value of the integral.

“btoilows that
f flz)dz
)

minus the sum of the integrals taken round the circles in
the positive sense is zero.

Herce ff{z)dz = 2wi(d, + B, . .. L),
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ie. the integral taken in the positive sense round any contour
is equal to 27 multiplied by the sum of the residues at the
poles within the contour. _
Exaweie 14. If Plz)=2—1 and Q) ==z -1, then
J&)=1—2(z + 1)1, The only singularity of f(z) is a simpis
pole at z = — 1, the residue being — 2. Hence flz)dz ia zero
(s
if the contour €' does not surround -the point z = -- 1 but is
equal t0 — dmi if O encloses this point. )
Let C' be the circle |z| = 2. 'Then, on the circle, z = 3 8%p 49,
and dz = 2i(exp i0)d6; therefore A\ :
2 N \".
f Py = 2% f (oxp $0— 2f{exp i6){(L + 2 exp i8I0
C LH ’ PN

2 “ :
=% [ {oxp it~ Alexpif -+ 2)/(5 + £8o8 0)))a
A :
2 : 4
= 2£f {cos f--¢sin §— 2[{cos ﬁ—f-{sin 84-2)](5+4cos §)]}d4
0 : N
_— 4’71‘?:‘ . p ..‘\“ .
By equating real and imaginary parts, we have

P '\" 3
f_ [(cos @ 25+ 4c0o80)1d8 < »
[H] 9 ," '. .
and “f&‘*{ﬁ'&*‘%ﬁ?fX'é’éé'brhda —o.
AN

The value of t {eebnd integral is otherwise obvious but thai of
the first would be more troublesome to find by more elementar

methods, ™
X

N\ 2 )
Examprr 15. Evaluate {1— 2k cos & -+ k2)~1d0, where &
N\ 0
is b@i,\'positive, and less than unity.
. ~.f%riting z for exp (if), we have cosd = (z -+ 2~ 12 and

2B = dzfe.

As 8 varies from 0 to 2, the point z describes the circle of
radiug unity which has its centre af the origin, The given
integral is therefore equal to the contour integral

dz dz
[iﬁz(lw kz) (1= kf2) sz.(l-- kz) (z— k)

taken round the unit cirele in ths positive sense.
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The integrand is a rational function with simple poles at
G and 2 = 1fk, and of these, only the former lies within the

5. The residue at 2z = & is the limit, as 2z tends to k, of
3k . s .

gy py ¢ which iz 1fi(1 — £?),

: iore the integral is equal to 2#f(1 — £2).

o7 and Laurent Series for Rational Functions. Let ¢ be

& site number which s not a zero of ((z). With the point
centre and radius equal to the distance between this .

4 the nearest zero of ¢(z) describe a circle 8. Then the

m P(z)f6{z) is holomorpkic at all points within (but HO%,

'\
N

K, is any point within 8,
() k= [(z— o) + (c— )]
= (¢ — &) M1 + [z c)f(c — 5
= (c—a&)"Hl L+ 3 A,(zfgrg,

=1 264

o
27
S

S

whane & is any one of the integers 1, 2,3,1\ . @ and _
Aom B k= 1) (—k—2). . k= 7+ Dfrlc — o).

We heave used the binomial pxittﬁnsion, which is valid since
i 3)!(5 = :x)l is less m%awibrar .org.in . .

dirailarly, all the othep{terma congrammg negative indices
w3y be expanded as pg\?&r geries in z— ¢. The polynomial
2y can be expressed\as ‘the sum of a finite number of positive
powers of 2 — e, A\

Henee, if the, point z lies within the circle §,

_~\J 2
D7 P@QE = £ Ce—or.
F i)

:~\2.

The ‘SB\I‘%S on the right is called a Taylor series.

Welshail now consider the type of series which is obtained
%i:ihh; ‘instead of an ordinary point ¢, we take one of the poles
ofthe function, say «.

Let T, T" be two circles which have the point z = « as
eommon centy s, the radius of the outer (T} being equal to the
distance between « and the nearest of the other zeros (3, », . . .}
of @(z). Then the rational function

PayfQz) — Az —a) L — dplz —a)~2— . . . — Az —x)-
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15 holomorphic at all points within 7' and therefore can %o
expanded in a Taylor series of the form
3 Cfz— o).
7 =i}
It follows that, if the point z lies within the annulus bounded
by 7' and 7", _ _
PRI = SA— 0=+ % 06— ay

=1 =10
Such a series is known as a Laurent series. The termhés oc:i-
3 A\
taining negative powers of 2 — «, viz. X A (z — a}i Svare san

. F=1

to form the principal part of the series. It sheuld be neotos
that A4, is the residue at the pole «, which is.Of okder 4.

Examrrr 16. For the function f{z) = (228 & 1)f(22 + 2) [
a Taylor series valid in the neighbourhasd) of the point z - -
and a Laurent series valid within amsbnulus of which i
centre is the origin. X7,

By division and the use of par’gia}}s fractions, we have

fle) = 2= 24 (2 DI R HE 22— 2+ (1) + 1Yz + 4y

from which it is seen thatwthe function has simple poles at .
peints z = 0, z = — 1. dhe residues being unity.

Since the furletiohd WoRUPEWRER D — i, there is a T:
series valid within €he circle which has its centre a$ that poi
the radius being'the distance between z — ¢ and the origit,
which is the qe\t}ir of the two poles.

Writing £ for z — 4, we have

',\Z'(:zj W= LAY+ ) (A 41 41
\::\." = 2= 24 2 — i 3 iy 0 — ) S [ — 1y
O "=

4 H=1l

as the Taylor series. It is valid within the wnit circle whicl
\\ has its centre at the point 2z = 4,

There is a simple pole at the origin and the other pele is at
unit distance from this. Hence there is a Laurent series valid
within the annulus, which has its centre at the origin and outer
radius unity; the inuer radins can have any valne smaller
than this.

The point z being anywhere within the annulus, |zf << 1 and
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{z 2~ 1} may be expanded as a georetric series of ascending
£z Thus the required Laurent series is

(fz) =2+ 2+ 5 (—zp

=1

2
4

7
=014z g
o=
vetacipal part of the series is 1fz.
our of a Rational Function at Infinity. In order to -
witie the behaviour of a rational function fz} = PRGN
* becomes infinite, we substitute Z for 1 fz and consider’
.12 1esulting function of Z behaves when 2 becomeszero:
erent cases arise. A
. If the degree of P(z) is not greater than that of Q(z),
finite when Z == 0 and can be expanded{fhérefore in
series. Thus )

J(Z) = Ay + A7+ 4,221 0D
whioo L2 is sufficiently small, and there‘fo.}ev
J&) = Ao+ (Aufe) + () + . .

; Is sufficiently great, o\
- in this case, f(z) is finite' when z is infinite, the point
¥ Is said to bevagpgddimulbrasingiafithe function.
23 i, If the degree ©F P(z) is greater than that of @(z),
%) becomes infinite,whien Z = 0, i.e. it has a pole of order
ja2 . Then, if Z lie$\within an annulus with its centre at the
orgn in the Z-plaey

< p w
‘,\111(1[Z) = ZBZ—+ X(CZ.

§=1 =10

\M

The :}g’s}gr”'i*adius (R) of the annulus is fixed and the inner
radivs @@y be made as small as we please.

~ O ¢ o

erice, fizy= BBz 2Oz
\ g1 re=d
when |zf > IfR. '

In this case we say that the function has a pole of order P
at infinity, the principal part of the expansion there being
}I.JI Bz
il
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Examrre 17. Consider the functicn f(z) of Example 16,
p. 72. We have

FYZy = (3{Z}— 2 + Z + ZJ(1 + Z)
= @)~ 24 Z+ L\ —Z+ 22— 23+ .. ),

provided that [Z] << 1. It follows that the function hss &
simple pole at Z = 0, and therefore the function f(z) has &
simple pole at infinity, Hence ~
f@)=22—~2 2 —g2 L 23, \
"o
when |z| > 1. The principal part of the expansiofiys 2z.

Analogous Results for Functions in (Generah. Having con-
sidered in some detail the properties of thespational functior,
we now state analogous properties of fungfions which are not
necessarily rational. No proofs are giwem here as they s
beyond the scope of this book. They il be found in the me:o
comprehensive treatises o which'\‘lggerence is made i the
Appendix (p. 135).

L. Taylor's Theorem. A funétion f(z), which is holomoryiis
at all points within a circlewf Tadius r and centre 2 = @, can
be represented by a seriesy,

fiz) = fla) + (%W@ﬂ@ﬂli‘h‘ary.orﬁ.iﬂﬁ— ayflaifnt + . . ..

valid when |z —{-c?} < ¥, where f,(a) denotes the value of
(dfdz)"f(z) whén'\z'%= .

H. Lawrenl's Theorem. If f(z) is holomorphic at all points
within an annutus bounded by two circles, with the point z = a
25 comnion centre, and with radii &, 7, such that r may be made
as smadl'as we please, then, if z is any point within the anmuins,

fey= L a0~ ay+ £ Be—ayn
= n=1

If B, vanishes when n exceeds s but B, is not zero, it is said
that the point @ is & pole of order s and that the residue there
is B,. At a simple pole s is unity and the residue is the limit
of (z— a}f(z) when 2 tends 1o «.

If an infinite number of the coefficients B are different from .
zero, the point @ is said to be an essential singularity,

HI. The Contour Integration Theorem. If J(z) is holomorphic
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af 2l points on & simple closed contour C, which contains within
% no singularities of f(z) other than poles, then

£ fz)dz = 2miR,

+ K is the sum of the residues at the poles within ¢ and
‘¢ the integral is taken in the positive sense with respect
i3 aren within €.
Behaviour at Infinity. To discuss the behaviour of Jz) ¢
i # beeomes infinite, we write z — 1/Z and consider how
behaves when Z approaches zero, ¢\
AMPLE 18. The function f(z) = exp (z) is finite wheflyz is
bat is singular in its behaviour when 2 becomes infinite.
%, if 2 is increased without limit through positive real values,
'} beaomes infinite, whereas, if 2 approaches infifiity through
segative real values, f(z) tends to zero. \Y;
Fuiting z = 1fZ, we have O

& 9.\
fa12)= £z C

th.v series on the right being a Laurent series which contains
oilimited number of terms inwelying negative powers of Z,
function f(1/Z) therefore ha# an essential singularity at
=, aynd it fol?ow’.vs Q\b&@\{;&}%_%{&&%_&@ikj hag an essential
songuiarity at infinity,

~xaypik 19, Considerphe function f(z) = exp (z)fz. This is
=2 jn the z-plane¢dt all points except the origin and at
ity. When z ig hte and not zero,

Fz) 28 1
N =0
SE 14 R+ @B .

Thus thelfonction has a Laurent series valid within an annulug
with the origin as centre, the radius of the inner circular
bougddary being as small as we please. Since the only term
whigh involves a negative power of z is 1z, the function has a
simple pole at the origin with a residue of unity.

Again, f(12) = Z + 1 4+ (Z-Y2!) + (Z23H) + . . .

from which it is seen that the function f(/Z) has an essen-
tial singularity at Z = 0 and therefore exp (z) [z has an essential

singularity at infinity.
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If we draw any simple contour C which encloses the :
the integral of the function round the contour in the
gense is equal to 2#¢, because the residue at the pole i= -
If C is the circle z = 1, we have 2 = exp (i0) at any paint o

and
27i = d
™ ./;f(z) z A
= f exp {cos B + 1 sin A)idd Oy
- :'\ “

=1 f ex] (cos §) cos (sin 0)df — f exp (cas&} f;.'iﬂ fatn odl,

k3 {

By equating imaginary parts, we deduc;é?bﬂat

f exp {cos f) cos (sin@)d8 == 2,
- K
from which it follows that P \%

N/

f ‘ exp (cog;‘ﬁ’):éos (sin 6)df = =,
a

N <
TN

because the intpgrandssmmerenfnetion of 6.

On equating realparts, we see that the other integral viiishes
—a result Whicbzi&\)bherwise obvious since the integrand is an
odd function 6f\g.” :

ExampLe 0. A function f(z) is holomorphic at all ponts,
except 2 £'¢, within a circle |z — a | = B, and (z — a)f{z; tends
toa lini k as z approaches @. If 4 and B are poinﬁ: s the
CLI'C;I‘B_\}‘?— @ | = r(<C R) such that the arc 4B (described in the
Q;\\slme sense from A to B) subtends an angle ¢ at «, prove

."\,j’ﬁ:.hat, a8 r tends to zero, f f(z)dz, taken along the arc from 4
\\ 7 1o B approachea-s the Hmit 1k,
First we consider 7, = f [k}(z— a))dz, taken along the arc
AB. When z is on this arc,
z—a = rexp (if), and dz = ir exp ()40,

and, whatever be the value of 7,
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Sinee (z—- a)f(z) tends to the limit & as z approaches a, we
gan vhioose 7 so small that, when z is on the arc AR,

(—afe)— k=,

<< & and ¢ is any given positive number no matter

> In]

siall,

Henee o flz) — [(kf(z— a)] = 9f(z — a)
aod I—I = f[n/(z —a)jdz = if,?dg;\.g \:.\.

wnae f gtands for ff(z)dz-. N
“herefore [f— 5= I'/-?;d0| <& d&“f_—;\;}b.

Dy making r sufficiently small, it followsythat we can make
L{ -~ 11} as small as we please, i.e. in the fiit
3

I =1 =&

W“’EXE%@S’_-OT g.in

t. (i} Bhow  geometrically, fthat 2 -- iy, |2| and arg 2z are not

wgenie fanetions of 2. 8
i) If e is a monogenie function of z, show that dwfds is also a
wonogenic funclion of 22

2. @how that log 28ed tanh z are monogenic functions of 2.

3. Tsing Puler'sphevremn that, if » is a funclion of @, y which is
homogeneous of Mdegree m, B, + pu, = mu, show that, if « also
sablsfies Laplageigequation, it is the real part of & function f(z) such that
Tl = w4 (e (uty - - o, ).

.Detcrruiég"‘f{z) when (i) w« = 2 — 3ay?; (i) v = yfa® + »2);
(iit) » =g + Zboy — ay®; (Iv) v = ayflz® © ¥

4. ¥} v are eonjugate, show that the following arc also conjugate:
(il,,gtf S-"bv and v + bu, where @, b are real constanis; {ii) wf(ee? + ©7)
&ggi‘;—wﬂf(uﬁ + v,

- #ind a palr of conjugate functions # and v such that
-+ v = [(x — y)sin 2x — (& + y)sinh 2y¥]f{cos 22 + cosh 2y)

and such that v i3 zero when ¥ is zero.

. Show that the curves given by v = 2 cos nf, where 4 13 a variable
parameber, form a u-system only whenn = 0O or 1.

7. SBhow that the parabolas r == A (1 + cos #) form a u-system and
find the corresponding v-system.

8. In a two-dimensional gravitational fleld the equipobential lines
are given by the equation ' — constant, where r and +* are the distances
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of a point from two fixed points 4 and B. T'rove that the lines of foroe
are rectangular hyperbolas which pass through 4 apd B.

9. Show that the coaxal circles given by 2% 4 ¥* -+ 24w -} 0 = 4,
where 2 is8 a variable parameter and ¢ ig the same for all the cireles, cun
be a family of lines of foree {or stream lines ) and find the corresponding
equipstentials,

10. 4 plane curve is determined by the parametric equations & — {11,
¥ = g{t). Show that the curve is one of the v-system given by ihe
relation 2 = f{we) + tg{w). ~

For the ellipse 2 = a cosf, ¥ = baini,show that the vsystem consintz
of the family of confocal ellipscs.

Find the #- and v-systems when the curve iz the parabola{ \“.\
N Y
r = aft, y = 2ai. « \

1L If % 4 dw == log {z—a)—log (z 4- ), show that the curves
% == constant and » = constant are two sets o{gcimleﬁ which sudb
orthogonally. N

12, If z = tan w, prove that z(cox Zu Rlegsh 2v) = sin 2u and
ylecos 2u -+ cosh 2v) = sinh 2z, Hence show\tha.t if « is constant and v
varies, 2 describes, on the Argand diagra—m,’:bhé circle

x? -y 1 2w cob% = 1.

18. Express w = z{z + i)f{z — i} infhe form @ +- ib, Determine the
regions of the plane within which the'modulus of the function exp (1) is

greater than unity. A (Lr.L
14. Sketoh the level swiRetivr the fapgtinns—
(i} sinz — sina,yvﬁéréaisrea]; (iv) exp (1f2);
(i) exp (z) — 134 {v) log =;
(iii) z exp (z}';"“ \ ) (vi} exp (z)f=.

15. If f(z) == (z\)ﬁ 1)fz and 2’ is the inverse point of & with respect
bo the unit cirgleywith the origin as centre, prove that | f{z') | == | f(z} .

Sketch theflgvel curves for f(z). Show that the curve | f{z) | = ¥
meets the Sigtle in four real points it M < 2, but that, if M > 2, the
curve cofigists of an oval within the circle and of the inverse of this oval
with é8pect to the circle.

,'18\ Evalnate the integral f exp {nz)f{22* — i)z taken separately, in

sthe positive sense, round each of the four quadrants of the circle
s} 2} = 1 determined by the axes. (UL}

17. If f{z} is holomorphic at all peints within and on a simple contour

C, show that the value of f Fiz)](z — a)dz is zero, if the point ¢ is outside,
. ¢
and 2 f{a), if @ is within ¢
18. ¥valuate f exp [{a 4 ih)xldr and deduce that

(a? + b”)fe“’ cos bedy = ¢2*(g cos bx 4 b sin by)

and (@® + B%) f % sin badz = e%%(q sin bz — b eos bz).



CHAPTER V
CONFORMAL TRANSFOBMATION

Cuniormal Transformation, Suppose that two complex vari-
ales w=u 4 and 2 =2+ fy are connected by thel

reiation \
= f(2), R

where f(2) is & monogenice functlon of z. O
Corvesponding values of z and w will be represented foy«pomts
in two planes which we shall call the z- and w-plaHes respec-
ty. If P, in the former plane, represents ay value of z for

i bi ich fz) is finite and its derivate is finite and\hot zero, P will
e cailed an ordinary point. The corresponding value of w will

Z-Plane
P

s Plane
\ oz

E XY

' Ni
Pz} PAS, @y
:.> Fre. 21

Le repres t”-ed'\by a point @ at a finite distance from the origin
in the w—&ane Let P, P, (Fig. 21) be ordinary points near to
P representing z 4 &z, z —|— Az, respectively, and let ¢, @,
be_ the' corresponding points in the w-plane representing

%aw—f(z—l—éz) and w + Aw = f(z + Az).

dince w has a unique derivate with respect to z, both dwféz
and AwfAz approach the same limit dwfdz as PP, and PP,
are diminished to zero. If PP; and PP, are suﬂiciently smaﬂ,
we shall have

dwfdz = AwfAz
and therefore Azféz = Awfdw;
ie. (PP PPy)et® = (QQufQC1)e™
where 0, §' are the angles P PP, Q,0QQ, respectively.
79
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It follows that
PP PP, = (Q,/00, and § = 6.

Thus the two infinitesimal triangles PP P, Q04 e
directly similar, their linear dimensions being in the
1:|dwfdz| and their areas in the ratic L:|dwfdz® Theo i
[dwfdz| is defined as the magnification.

If Py is any point within the triangle PP.P,, the corr -
ing point ¢, will be such that the triangles PP.p,, S5, wre
directly similar, and, consequently, @, lies within the/tianale
Q0. N )

The relation transforms the infinitesimal , ffinngle 7.
in the z-plane, into a directly similar triagule Q00
w-plane, and points within the first corespond to
within the second triangle. A point which moves round |
perimeter of the first triangle in the positive sense iz &

formed into a point which describes§hic perimoter of the waro-
triangle in the saine sense, « \J

If a point moves in the z-pline so as to trace a curve tie
locus of the (:orreleondjng.Ft}irlt in the w-plane is called the
transformed curvew IfAP@IbpEy 18- Wements of are of Lo
curves through P, thenQ@);, QQ, are the corresponding elemanis
of are of the transfornjed curves, and, as we have scen, the zing!
PPP, 0,00, a e'\éq’uaI in both magnitude and sense. 5
transformed cux&bs therefore intersect at the same angle s3
the original ones. In particular, orthogonal curves transforn
iuto orthogenel curves.

Suppogecthat € is a simple closed curve in the z-plane such
that<all)points on and within it are ordinary points for the
tranSformation. Let D be the corresponding curve in the
w;plane‘ Then D is also a closed curve sinee f{z) is assumed to

. (Be one-valued. The area bounded by €' may be divided into

) infinitesimal triangles which transform into directly similar

triangles in the w-plane and the aggregate of the latter trangles

is the area bounded by D. But the curves ' and I} are not, in

general, similar, for the magnification js not constant over the
area bui varies from point to point.

Since infinitesimal elements of area are unaltered in shape,
the transformation is said to be conformal.

It is important to notice that the above discussion has been
limited to ordinary points: it is to be expected that the
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conformaal property will be lacking at points which are not
ardinary but are singular.

mxamers 1, Consider the curves u=constant, v==constant
the z-plane. The corresponding curves in the w-plane are
two families of straight lines parallel to the - and u-axes
i these obviously intersect at right angles. The curves
comstant and v = constant therefore cut orthogonally—a,
vhich was seen in the previous chapter. '
AMPLE 2. Apply the transformation w = 2% to the aréa)
.ne first gquadrant of the z-plane bounded by the axesand'
circles |z| = a, [2) = b{a > &> 0). .
{2z = re¥, then w = %% and so w = +? and argw = 26.
The gundrantal ares 44°, BB’ therefore become semicircnlar

z-Plane w- Plane’

p i"m. 2%
o\

arns of radil a2, b2 ras;{%étively, while the straight lines 4B,
4" become the paptg of the u-axis between the points w = &2,
# = 6 and w = .—\“w", w = — b2,

in Fig. 22, cdriesponding points in the two planes are indi-
cated by the §me letter. The magnification at any point is
given by %Ddz] = 21z and is finite and different from zero
2t all pofnts within and on the given boundary. The trans-
form{bf{m‘i is therefore conformal ; e.g. the angles at 4, B, A’, B’
btk figures are right angles. But if & vanishes, so that the
aréadn the z-planc becomes the quadrant 044, the correspond-
ing area in the w-plane is the semicircle on A4’ as diameter
and the transformation is conformal everywhere except at O,
where the magnification vanishes. The angles at O in the two
planes are nof equal, that in the z-plane being =f2 and the
other being =. But the angles at the points 4, A’ are still
right angles.

ExamprrLe 3. Consider the transformation w = @z, where a
is & complex constant,
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Let @& = A exp {ix} and 2z = r exp {if).
Then w = Arexp (i + ix), [w| = 4|z|
and arg w = arg z -} arg 4.

If P, in the z-plane, represents z, the point ¢, in the same
plane, which represents the corresponding value of w, may [
constructed by rotating OP about O through an angle « iDaghe
positive sense and then altering its length in the ratio 49\ ia
other words, the transformation is equivalent to a, ;:‘otatic:—n
about a point and a magnification. If P describes a~enrve, ins

locusof @ isa gedtetrically
Q similar curve furned
i through@f’angle o,

. Inversion with Respeci

P to acCircle, If P is any
point in the plane of a
“gircle (Fig. 23), with centre
A NVO and radius k., and P iz
“ a point on QP such that
. . and P’ are on the same side
O and OP.OP = %,
Flﬂwaéw'dbna}l 'hbrary'm‘é) en P and P’ are said $o
be inverse points with
respect to the ci;;clé: The point O is called the centre of
inversion and % $he fadius of inversion. Clearly, if P is outside
the eircle, P’ igxinside the circle; if P’ is on the eircle P coincides
with P. oo™

If Q, %a}e any other pair of inverse points with Tespect to
the sapde eircle, the triangles OP0, 0Q'P’ are similar because
OP[08.= 0Q'{OP' and the angle at O is common 0 the two
trigugles. It follows that the angles OPQ and OQ'P' are
eqital,

(If P moves in the plane 6o as to describe a curve O, its
" inverse P describes a curve C’ which is defined as the inverse
of (. Suppose that P and € are neighbouring points on € so
that PQ is an element of arc of the curve; then P’ and @' are
neighbouring points on ¢'. As Q approaches P, the limiting
position of the chord PQ is the tangent at P to the curve O,
while that of P'Q’ is the tangent to €” at the point P’. These
two tangents thus make equal angles with OP {measured in
opposite senses). It easily follows that, if two curves ¢, D
intersect at an angle 8, their inverses also intersect at an
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sugle 8. In particular, the inverses of two orthogonal curves
-algo orthogonal,

it € 1s the origin and P the point z = 7 exp (i6) in the 2-plane,
o OFP = k*fOP and P’ represents (k%/r)exp (i6). Let P,
Y the image of P’ in the real axis; then P, represents

(K2fr) exp (— i0) = k.

10 P describes the curve €, the locus of P, is the reflexion of the
irverse curve O, R

Comgider the inverse of a cirele of radius e with its centte)at
the point A (Fig. 24). Let P be any point on the circumférence

www_dbl\ai’ijib Zry.org.in

22\
¢+ Frae. 24
N\

and let OP meet thelcircle again at . Draw a line through P,
the inverse of Ppyarallel to AQ to meet OA in B. Then

0BI0AZ 0P'j0G = OP . OP'JOP . 0Q — K2,

where ¢ jsf'he length of the tangent drawn from @ to the circle,
The ratio QBf0OA is therefore constant and B is & fixed point.
F*ﬂhm‘, BP'{AQ = OBfOA = constant and so BP is constant
in Yength. The inverse of the circle with centre A and radius
2 is thus a circle with centre B and radius k2o/e.

If the circle passes through the centre of inversion, the
above argument breaks down because the points O and @
coincide. In that case, let 1) be the point which is diametrically
opposite to O and I’ its inverse {Fig. 25). Then the triangles
OPD, OD'P’ are similar and the angle OD'P’ is a right angle.
The locus of P’ iz thus the straight line through D" which is
perpendicular to the diameter through O.

—

Q"
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The Reciprocal Transformation ; the Point at Infinity, Con
sider the vonformal transformation given by the recipr
relation ’

w= 1}z
Ingtead of regarding corresponding valuez of 2z and w» as
being represented by points in different planes, it is convenient.
to think of the w-plane as superposed upon the z-plane. @%e
numbers z and 1fz will then be represented hy noints R i
respectively, in the same plane. _ (\)
From the previous section, it follows that, if P’ is €6’ inverss
of P in the unit cirele with its centre at the origip; then § is
the image of BAih the real axis.
f-4 Obviously,,if\P is outside tio
circle theny is inside.
F The swélation w = 1fz tha.
esta 1i§hes a one-to-one ecs -
régpondence between poiu

0 pf iside the cirele, with i
L _wiexception of the origin, ard
%y points owtside the circle. If :

www.dbratlibrarhesaises zcro, w becomes

Yo, 35 AN finite. Since, to everv p

R\ within the ecircle, other i

&\J the origin O, therc correspornds

one and only 01}~‘3\p\c3in.t outgide, we assume that the same is trus

for the point and that there is one point—the point af infinity—
to which O\gbrresponds.

Thus,/in-the theory of functions, which makes use of the
idea, of \inversion with respect to a circle, we have only one
poﬁgt\\af infinity in the 2-plane and not a straight line at infinity
asin projective geometry.

() "When it is desired to discuss the behaviour at infinity of &
) function f(z), we apply the reciprocal transformation and
consider the behaviour at the origin of the function f(1fw).
For instance, if f(2) = a + bz, where @, I are constants,
J(fw) = a -} (bfw) and the latter function has a pole of the
first order at w = 0. It is said, then, that f(z) has a pole of the
first order at infinity.
The Bilinear Transformation, A relation of the form

Awz + Bw +-Cz+ D=0, . . {D
in which 4, B, C, D are constants (generally complex) such
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aat AD > B, is said to be bilinear. To one vahie of one of
tia variables w or 2 there corresponds one and only one value
% the other. H A = BC, the relation is of no interest as it
won'd give z = — Bfd or else w = — CfA.

Such a relation establishes a conformal transformation from

Fig. 26 ¢ x.‘\\“

5 z-plans to the w-plane and vice yersa, We shall think of
che two planes as heing superposeds ™
Solving for w, we have o ‘
www.dbraulibrary org.in

w == — (Cz + D)f(Az 4 B)
= — (CJOENUBC — AD)[A4z + B} . (@)
a vesult which can he E\‘?Iﬁ'éssed in the form
W @ == fs}:(zf— b},
AN/
where @, &, & apg~constants.
Writing ,<3‘b = re?® and k = %%, we have
J:\\ lw— a] = *fr
and, i)Y ¢ = arg (w— a),
VV ¢ = 20— 0,
which can be written ¢ — & = .o — 4.
We can now construct geometrically the point representing
w when the point z is given.
Draw a circle of radius ¢ with centre B which represents

z =05 (Fig. 26). Let P be the point z and P’ its inverse with
respect te the circle; then, if 2’ is the affix of 7,

|2" - b| = c¥fr and arg (z' — b) — arg (z — b) = 6.

O\
Qw) A\ o
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Draw a line through B making an angle o with the real axzis
and let P, be the image of P’ in this line. Then the veeter

BP, represents the complex number of which the modulue is
¢*fr and the argument is 2¢— 6, i.e. the number w — a. if,
therefore, we draw through the point R (of affix a) the vest
RQ which is equal to BP in magnitude and direction, ihs
point € represents w. ~\

The bilinear transformation is therefore equivalent &a*an
inversion, a reflexion, and a translation. 2 AN

Since the inverse of a circle is a cirele or a straight Hrie, an:d
reflexion and translation do not alter the shape\ of a ﬁgu
circles are transformed into circles or straight lines,

Suppose that, by the bilinear relation, the pomts 21> % R 2y
are transformed into the points w,, w,, W Wy, respectively, 5]
the eight points being at a finite d.lst\anee from the origin
Using equation (2), p. 85, we have \\ ’

w3~ wy = — (BC'— AD) (5525} (42, + B) (4i + B

*
By

along with similar expressiondifor the differences w, — w,, ot

Hence [(uw; — gyl pr iy s )f (u, — w,)]
= [(21 ﬁa)f(zz zeh} s [y — 24) (25 — 2,0],
or (w1"{éw3w4) = (%2a%574)

where {2;2,2,2,] } stands for the exprebslon on the right-hand sids
of the abova®quation, This expression is known as the geﬂerc”
ized crosszratio of the four points z,, 2, 2, 2, The cross-ratio is
tkua left\wnaltered by any bilinear iransformation.

her, it follows that the bilinear transformation which
converts three given points 2,, 2, 2, into wy, w,, w;, respectively,

¢ sam be expressed in the form

(z2s2y%5) = (wwywguy).

This transformation converts the cirole which passes through
2, %, % into the circle through w,, w,, w;.

It follows that a bilinear transformation can always be found
80 a8 o transform any given circle in the z-plane into a given
circle in the w-plane; for we can use the above transformation
taking z,, z,, 2z3 0 be points on the first circle and w;, w,, 1w,
to be points on the second.
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Similarly any given straight line in the z-plane may be
ezenstormed into any given straight line in the w-plane. In
particular, the real axis of z may be transformed into the real
usis of w by giving real values to 215 g, %y, Wy, Wy, Wy,

¥mr DovBLE Pormnts, If corresponding values of z and w are
“spresented by points in the same plane, these points are, in
general, distinet, but they coincide if 2 satisfies the quadratic

A2 4+ (B+ Cz+ D =0, O\
which is obtained from the equation of transformatith " by
witting w equal to z. Thus there are, in general, twa distinct
¥ 8 which are the self-corresponding or double points. * There
+% two cases to be considered, S

Case ¢. Suppose that the above quadratic.hag’two distinct
ronds @, B O

s ; 9, N
Since we=—(Cz+ D)f(dz 4+ B) 7/
and o =~ (Ca + D)f(da + BXD
w— o= (4D— BO) (z— a)f{{do + B) (42 + B)]:
smilarly *“ )
w—f = (ADwBORRVBHRABEB) (42 + B)).
By division, we have \"
(w— (@ ) = K(z— a)f(z— ),
where N K = (48 + Bj(Aa + B),

Hence, |(w r:ae)'[(w ~ B = K] [(z— «}f(z— B . (3)
and arg (w— o) > arg (w— §) = arg K + arg {z — a)

O —arg(z—p) 1 2nw . (4)

ik

where n ib\g;i-o or an integer.

If 2 maves so that }{z — a)f(z — )| is constant, its locus is a
circle.of the coaxal system which has the double points « and g
ag-limiting points, and equation (3) shows that the locus of w
i\ circle of the same system. Again, if z moves so that
arg (z— a)— arg (z— B) is constant, its locus is & circle of
the coaxal system which passes through the double points
@ and 8. From equation (4) it is seen that the locus of wis a
circle of the same system (ses Examples 12 and 13 on PpP-
13-14).

Case is. If (B + ()2 = 44D, the double points coincide at
the point z = a, whers a — - (B+ O)f24. In this case, the
transformation is said to be parabolic.
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Since Au + B = }(B—C) and 4D — BC — 15— ¥, th
relation
w— o= (4D — BO) {z — a}fl(da 4+ B) (42 - B
reduces to
Ylw— a) = [1f(z— «)] + [24/(B— C].

ExampLE 4. Apply the transformation w = (zz - it 4 4)
to the areas in the z-plane which are respectively indict: ind
outside the unit circle with its centre at the origin.\J)

O
2~Plane w-Plare”
wpy
g &N
¢ £

W E L

/- D D
7 % - ‘\ gt : o )
3}-’}\\ _//ﬁ’fﬂ) O 86D Ae “

D) O I

_
AN . n
www.dbratlbrary org.in
N

i

o Fre, 27
2N\

The seH~coﬁ\é§iigndjng points 4, B are given by
O # =z 4+ Dz + 4),

] 3

ie. A\ Z2=41,
Since /2> W1 =(i—1)(x— Ojz + i)
andy WAL= 4 1) (2 + Dfz o o),

@€ have (w— Dftw + 1) = iz — iz -+ 1).

/ Hence, in general, a circle which passes through the points

4, B, at which 2 — + 1, is transformed into a circle through
the points w = 4+ 1 in the w-plane. In particular, the Iatter
circle may degenerate into a straight [ine.

In Fig. 27, the z- and w-planes are shown separately and
corresponding points are indicated by the same letter.

It is at once obvious from the equation ‘of transformation
that w is finite for all values of ? except — i. Hence the point

Dz = — §) corresponds to the point at infinity in the w-plane,
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Ainee dwfde = — 2f(z + {)%, the magnificetion iz fuite and
it gero at all points except D and the point at infinity in the
z-piane {the latter point corresponds fo the point B at which
w=: 7). 'T'hus it i3 only at D and E that the transformation is
ot conformal.

When » describes the circle |z| = 1 in the positive sense with
reepachk 0 its interior, both arg {z-- 1} and arg (z + 1) Vary,
continnously except when z passes through the points 4, B
wliich #z = = 1. In order te see what happens al theke)
seintg we shall make the point 2 avoid actually passing the6ygh
tae points of discontinuity by letting it describe cireulr arcs
of vanishingly small radiug about 4 and B. When tranbforming
the exterior arca we shall take these arcs to beloiside the
circle as shown in the figure. \/

While z describes the arc about 4, the anple between the
vootor 2 — 1 and the real axis varies corbinuonsly between
valoes which are nearly equal to — n-jﬁ}and <+ nf2. If the
rading of the arc is diminished to zéte! the amount of the
discontinuity is #. Similarly, when makes the detour round
A, the angie between the 'vectdi:' 2 + 1 and the real axis
varies continuously bet‘wﬁemmg;{gmﬁ-gﬁaiqlg_me ultimately «f2
and 3m/2. N

Let the point 2 start frch’ D and move, in the counter-clock-
wise sense, round the cifele z = 1, making detours round the
points 4 and B. Whehz is on the quadrant Dd, we can take

aple — 11f(z -+ V)] = — /2

and therefore arg’{(w — 1}/(w -+ 1)] = arg ¢ — =f2 = 0.
The cerregpem@ling point w is then on the positive part of the
real axis 43\{1

& moves from infinity to 4 (w = 1} as z moves
from Do A4,

’Wh{iﬂ’é malkes the small detour round 4, arg [{(z— 1)f(z + 1}}
ciungeés from — #2 to 4 #/2 and so arg [{w— Df(w + 1)]
incréases from 9 fo #. As z describes the semicircle A0R,
arg [{z— 1}/(z + 1}] is constant and equal to «f2: the corre-
sponding point w moves from A to B along the real axis. As
z moves round B, arg [{w— I)f{w + 1)] decreases from = to 0
and it retaius the latter value while z moves along the guadrant
BD. The corresponding point w therefore moves along the real
axis from B to infinity.

Thus, as z describes the circle in the sense DACBD, w moves
in the negative dircction along the whole of the real axis in

4—{T.123}

Q"
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the w-plane. The area cutside the circle in the z-plane is on
the right of an observer who moves in the sense DPACES} and
s0 the corresponding area in the w-plane bears the same
relation to an ohserver who describes the corresponding path,
Thus the npper half of the w-plane corresponds to the exterior
and the lower half to the interior of the circle.

YxamPLE 5. Express the relation w — (13iz 4 76)4(3z— 51)
in the form (- a)f(w — b) = f(z — a)f{z — b), whera & 6,
ars cougtants. o

Shew that the circle in the z-plane whose centiC 9% 2 = ¢
and whose radius is 5, is transformed into the ‘eircle in the

Z~Flane

g il
\ ¢ A
A d mif{ii'bl'ar‘y_org_in
. -8 £
;] A&

\

o \\ B‘_:rs. 28

N\
) S

w-plane Jaf/the line Jvining the points w =g and w = b a3
diameipry’and that points in the z-plane which arc exterior to
the €ortuer civcle are transformed intio points in the w-plans
within the latter civcle,

:..\;f’"_{‘he self-corresponding points are given by the guadratic
\”\ 2(3z — 5i) = 18iz £ 75, ie. (2— 30)? = 18
the roots of which ave @ == 4 -~ 35 snd b — . 4 - 34,
Since  a == (13ia 4- 75)/(3a — o)
W& = {13z 4 75){(3z — 51)] — [(13ia + 75)f(3a - 5i)]
= — 160{z— a}f(3a — 5) (32 — 54).

L]

Similarly

w—b = — 160(z — H)J(3h — 57) (32 — 5i)
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andi therefore
(w0 — a}f(w—b) = [(3b— 5i)j{30 — 5()| [z a3z~ bl
== [{=4 + 504/5] [(z~~ a)f (z — B)].

The peints z = a, 2 = b lie on the cirele || = 5 and it follows
inmediately that this circle is transformed into a circle in the
w-plane passing through the pointa w == 2, w — b,

When 2 lies on the minor are PRQ (Fig. 28) of the civele

|2} = 5, where P, @ are the points 2 — «, z -= i, O\
argiz—gl—arg{z—0) =0 = £ FRO 'S\

o
[t
i

arg l{— 4 4 8)f5l = argh =g = XOGN 3
fe--b) = £ X0G + L PRG¥ 3xf2.
S\

en ¢ lies on the major are 125G,

arg (z--a)—argfe— b} =0 — o )

and arg {w— a}— arg {(w-- &} = mf2. L&
- - . —~ = \ " .
Ad z deseribos the circle 12[ == 5, it fol¥ws that w deseribes

the chiele on af as diamoter in the g-plane, the upper half of
vz eirele corresponding to tho g@@mjor arc PS¢, The point
2 w= 6 porresponds to th@\pgj.}a}j{%ﬁiﬁrﬁﬁg}q thiz is obviously
outeide the w-cirels, the miesior of " which must therefore
correspond to the exterior of $he z-cirele,

The Transformation W Z - (K3 z). where k iz real and
positive. 'This transforfgation finds many applications, particn-
iatly in hydrodynangts in conneeticr with two-dimensional flow
past a flat plute, dgarcular or eiliptic cvlinder, and an aerofoil.

Since dwfds 2\ F— (B}, which is finite at all points except
z = ¢ and netlZero except at z = -k, the transformation is
cobformalabvall points other than these. Ag z approaches
infinity, W\ dpproaches equality with z and the maghnifteaiion
|dwfdafrapproaches unity. Henee an ares at a great distance
frofinthe origin in the z-plane is transformed into an almost
ideh#ical area at a great distance from the origin i the
w-planc,

Consider (Fig. 29) the transformation of the circle il = ¢,
where ¢ > %. Af any pcint on this circle we have z = ce® and
therefore

W= % 15 = ce? + (kBfe)e—¥
=a cos & - b sin 8,

where @ = (c2 - %)fc and b = (o — k%)/c.



\

92 THE (OMPLEX VARIABLE

Hence u = a cos # and v = § sin 6.

As § increases from — o to + &, the point z describes the
circle once in the counter-clockwise direction and the point w
Toves once in the same sense round the ellipse

(ufa)t + (ofp)* = 1.
The area cutside the circle is transformed into the area outside
the ellipge. N\
Z-FPlane ur-Plane

7
<

sf "*\ v /-:?—‘\%{:

N

==2k w=2k 7
w x’\\“ \\_ﬂ",

I Plarwwwd b’l"ﬂ:f.:fl ibrary.orgin g Plane
—-.._\ ¢
=%

1Zf= \< ] R
4 \\?\ /( )\
% Qaw
O
.\n'

QY ..
\\~ lz/=¢

N
NS

Fig. 28

™

The focl 8, 8" of the ellipse are given by
w = +{a®— b2 = | oF,

and the corresponding points in the z-plane are z = L £,

If ¢ is made equal to £, the major axis 2 of the oilipse becomes
equal to 4k and the minor axis 26 vanishes. The ellipse then
degenerates into the line S, A point z, which moves in the
trigonometrically positive sense round the circle, is transformed
into a point in the w-plane which moves along the real asxis
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from 8 to § and then back from 8 to §'. The area outside the
dircle in the z-plane becomes the area of the whole w-plane
with an internal bounda.ry SS* which may be regarded ae an
1mpassable barrier (as in hydrodynamics) or as a slit in the
plene. In either case, a point which moves in the plane must
avoid crossing the barrler or slit. For instance, in order to
move from a positien P on the npper edge of the slit to the.
apposite point ¢ on the lower edge, the point would hewe i
describe a path like PR surrounding either S or §'. O\

To a given point in the z-plane corresponds one and opfghotie
ot in the w-plane, but, to one point in the latter plage; ‘there
sceraspond in general two points in the z-plane &hich are
given by the roots of the quadratic equation m'\’\'

*-%3—-—/9‘:

The product of the roots of this equatmn\hemg &2, 1t follows
’rhat one of the points is inside and the. gter outside the circle
|z| = %, unless the given value of w I8 wépresented by a point
on one of the edges of the slit, in whidk case both points ars on
the circle. There is thus a one- “'o~o*1c (,U_mr-,pondenfe between
pointa in the w- pTane %I! d%wiw “the real sxis between & and
m” and points ontsidd the THEH Rl THeZ S lane.

A CONSTRUCTION FOR GJORRESPONDING POINTS. If P is any
point in the z-plane, Iet\P be its inverse with respect to the
circle [z[ =k, end Ghe i image of ' in the real axis, Then if

% is the affix of Pothe affix of Py is ?c*jz {see p. 83). If @ is the
middle point oi}‘PP its affix is l[z (B2)] = gw

Thig gives & Minple construction for the curve in the w-plane
which oom:r@@nds to any given curve in the z-plane. If the
latier ole¥e’ is drawn to a scale of twice full size, the locus of
Q. whlﬁh’\may be readily traced, will be the actual curve which
is requﬁed
~Jransformation of s Circle into a Cireular Arc, Apply the
“wansformation to an y circle which passes through the two
pointa z = 4+ k. If 2 iz any point on such a circle, we can take

arg [(z— kyf{z + k)] = a or & — 7,

where o is constant, according as z is above or below the real
axis. If z moves round the circle in the counter-clockwise
sense, arg [{z— k)f{z + k)] changes from o« -— 7 to « when the
point passes through % and from « to «— #» when it passes
through — k&,
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Now since w— 2k = (2 — k)22
and w4+ 2k = (2 + 2z,
{w— 2k} (w L 2k} = (e — E}(z + B)]%,

whence
arg (L‘}— Zk‘) — arg (%? —|— 2k} == EEarg (z - fc} — arg (z + }:)]
== 2y or Lz ~ 2, A

according as 2 is above or below the real axis. A

Hence, as z describes the circle, starting at the pqiﬁt-.\!.:,
locus of the point w, in the w-plane, is an are of & credle join
the points w = L+ 2k, the angle subtended by these two po:
at any point of the arc being 2o, As 2z moyédfrom £ to
along the upper are, the point w moves™from 2k to —
When 2 passes through the point — EN\efg [(z— k}fiz —
changes from « to x — = while arg {{tesS26)] (2 L 21} chan
from 2« to 20 — 27 and retaina this(yslue ag w returns to ths
point 2k, The arc in the w-plandisghus described twice.

The area outside the circle in the z-plane is transformed insc
the whole w-plane bounded jaternally by the circular are.

Tus ABROFOIL. Any gjtele in the z-plane which passss
throngh the poRtfy IR VORE&Me within it the po
z = —k is transformged into & closed curve in the w-pi
which passes throygh the point w == 2k. As the point z mo
along the cim{'fe’rence through the point %, arg(z—
changes suddenly by an amount «» while arg (z -}- k) varies
continuously, Mt follows that there is a discontinuity of amount
27 in the ¥alue of arg {(w — 2k)/(w + 2k)] when w moves along
the curv'ic\ih the w-plane through the point 2% and =0 this curve
must hive a cusp at that point.

By ‘choosing a suitable centre and radius for the circle, the

.corresponding curve in the w-plane may be mado to give a
\.tlose approximation to the section of an aeroplane wing; 2

cylinder which has such a curve as its ecross-section is called
& Joukowski aerofoil.

The Transformation w — log z. If we assume the logarithm
to have its principal value,

w=u -+ iv = log, r 4 10,

where r is the modulus and § the principal argument of 2.
If 2 starte at the point — @ and describes the vircle t| =@a
once in the counter-clockwise sense, % is constant and » varies
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continucnsty from — o to . If z continued its motion there
1d be a discontinuity in  when it crossed the real axis at
Fo avoid this, we can imagine the plane slit along the
: of the negative part of the real axis.
ace dwfds = 1fz, the only singular points are the origin
the point at infinity. In the portion of the cut plane which
evween the circles |2/ = a, |z[ = b{< a), the principal .
vaten of log 2 is one-valued, finite and continuous.

Ruppose (Fig. 30) that the point 2 moves round the hounddny
wousisting of the circle 4BCDE (|z| — a), the upper edge FF

el

z-Plane w-Planeg™\
y R L
D izi=a v X \
m\,/
/ jzf: N'\:l.\ el E
x ST
_db‘va:t.;‘libral'y_o ;g;i;am-?zb usioga
" v A
R

" Fre:. 30

of the cut, :Qhé circle FGH (jz| = b), and the lower edge HA of
the cut, the’ direction of motion being indicated by the order
of 1’]1(3!}‘{,{(}[ of the letters.

ﬁ-gls(z"'describes ABCDE, w moves along the line v = log «
between the points at which v has the values — » and -+ =.

Jhen z moves from & to P, v is constant and equal to «, while
4 decreases from log @ to log &. As z moves round FGH,
w moves along the line 4 = log & between the points at which
# = 4 =. FHinally, as z returns to 4 along HA, v is constant at
the valoe — 7 and » increases from log b to log a.

Thus the rectangle AEFH in the w-plane, with its sides along
the lines « = loga, v = w, u = log b, » = — =, corresponds to
the boundary in the z-plane and the area within either boundary
is represented conformally on the other.
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If @ is increased without limit and b is diminishes 0 fern,
the rectangle in the w-plane becomes the doubly infinite strip
between the lines v = 4- «, and this corresponds to the whole
of the cut z-plane.

The Transformation w = cosh z, Here

u + v = cosh @ cos y -+ 1 sinh « sin ¥

4 . . N\
and # == cosh 08 g/, v = sinh x sin 7.
O\
Z-Flane W Plaks, .
4 L yp B N\
x=
D
0

) Fiz. 31

If  is conthns, the locus of the point w is the ellipse
\Y;
\ ufcosh? o 4 v3fsinh? @ =< 1:

if' {;,\{'Q"&nsta-n.t, the locus of w is the hyperbola

AN ’

«\”\ y “Clearly the two enrves are confoeal, the common rem belng
at the points w = 4- 1,

The rectangle ABCD (Fig. 31) in the z-plape, with sides
along the lines = g, Y=f, x=0, = § is transformed into
the area ABCD in the w-plane between the corresponding
cilipses and hyperbolag, Actually there are four such areas
but only one of these corresponds to the rectangle 4BCD:
the others are obtained from the areas which are the images of
ABCD in the 2- and y-axes.

ufoos?t y — v¥fsin?y = 1,
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The Transformation z = ¢ tan 3w. Taking ¢ to be real (and
rositive), we have
&+ iy = ctan 3{u + iv), ¥ — 4y = ctan Hu— v}
and so tan u = tan [Hu + dv) + Hu — i)

= 20xf{e? — 2t — y¥) . . . . (8)
sl tan tv = tan [}(u -+ v} — S(u — )] O
= Zeyf{c® + 2 4 4% . . . - (6}
€ N

From (5) and (6) it follows that the lines 4 = constant ghd
¢ = constant 1 the w-plane correspond to the families of
coaxal circles in the z-plane given by the equations A\

<
2Pyt Qwecotu— g2 =0 "‘\ . {7
and 2 - 4% — e coth v 4+ ¢2 = 0 QB - . (8)

The circle « = constant passes t-hrouglx(th\ta points 4 (0, ¢)
end B (0, —c). Tts centre is at (— ¢ catvg 0} and ite radius is
& ¢ cosec u according as w is positive or hegative,

The circle » = constant has its celifre at (0, ¢ coth ¢) and its
rading is 4 ¢ cosech according®es v is positive or negative.
When vis L @, the radiuyid BRaE/bAsr VIR 8dfitie is at (0, £ ¢);
L.e. the points 4 and B are the limiting points of the p-gystem.

Let P (Fig. 32) be thelpoint which represents z, then the
veetors AP, PR repre@b’% — i¢, -~ 2 i, respectively,

Now ~O

o= ie)f( 2% = G2 + e)f(— iz + 9

e = {cos dw -+ i sin dw)f(cos Jw— ¢ sin Lw)

'\Q““ = exp (¢w)
N = exp {— v -+ fu).
Hende)  APIPB = |(z— ic)f(— z— ic)}
\ / = eXp {(— ),

and one determination of arg [(z — fe)f(— 2 — ic)] is equal to u.
Now, when P is to the right of the imaginary axis, one
determination of arg {{z —ic)f(— z — 4e)] is

XQP - XRB — n— APB,

where XQP, etc., denote the positive measures (hetween ¢ and
7) of the angles.
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When P is on the left of the imaginary axis cnce valne of
arg [{z — de)f{— = — 4c)] s
XQ)'P— (2n—XR'B}= — R'Q'P—QRP
= APB— =.

As P moves about in the right-hand half of the z-planc, the
angle APE varies from 0 (on AY and BY') to 7 {on.d B
The corresponding value of arg [(z — Z6)f(— z — )] garns
from = to ¢ O\

When P mioves in the left-hand half of the plane, =2

O oy N
PN
}/ P(Z,J ;)'. Y
AMic) ® '
" ’:\\: i
argue-iy A Lo
X' a RA X X Xfar‘g{’_z_icj it aloA
argiz-ic) A\
5 ('iC)www_clb’r‘a:fﬂi'i;‘l'ar‘y_org_in B(-i)
’ Ve . #
y Y

NS
s\ J
&

again varigg\ffom 0 to = and the above argument varies from
— 7 (whenP is on AY or BY') to 0 (when P is on 4AB).

Henge'if P is on the right of the imaginary axis we shall take
u 0{lie between 0 and =, while, if P is on the left of the axis,
we'shall take % to lie between — # and 6. If P crosses the axis

Fig. 32

Jbetween the points 4 and B, u varies continmously, but, if

sl ‘ P crosses outside the segment 4B, # iz discontinuous. The dis-

\‘z

continuity may be removed by slitting the plane along the
whole of the y-axis outside the segment AB.

Since » = log (PBJAP), the values of v range from — o
(when P is at B) to + = (when P is at 4). The lin¢c v = 0
corresponds to the real axis. The whole of the z-plane is thus
represented on the doubly-infinite strip of the w-plane bounded
by the lines % = L .

That part of the z-plane which is outside the circles » = a{> 0}
and v = b(<0) corresponds to the interior of the rectangle in
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» ie-plane bounded by the lines w= L 7, v=a, v =6
: 33, in which corresponding points in the two planes

ed by the same letter.)

s transformation is used in dealing with two-dimensional

ial problems involving ecircular cylinders with parallel

Y

X & M X w
R Y
AN
\
RS

pgrw.d b’lfs'aéi;:l i‘br‘al'y_or&i—ﬂ— g 7
. Y=~ w=T

K

7

\\ v /

2, Fro. 33
X“\ W

Successive Transformations. By means of a relation of the
form %
~O - L =1
ke may transform conformally a figure in the z-plane into a
figure in the Z-plane, and this again may be transformed
conformally on to the w-plane by a relation

w = F{Z).
Clearly the figure so obtained in the w-plane could have been
obtained by the direct transformation given by
w = F(f) ).
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In practice, it is sometimes convenient fo treat o fairly
complicated transformation as the resultant of iwo or wmore
simpler transformations applied successively.

ExampLE 6. Consider the effect of applying the tran.ior-
mation

w = log coth 1z

%o the semi-infinite strip on the positive side of the imaghuary
axis between the lines ¢ — +

O
- B y=r ¢ “
Z=fr
—
7777 \
Z=0 .7 z % ¢ ;3 P
)7 i
Z=-n / /,f
A y=-ir o PN
R
£ y/// ) 4
a:t.;{i:l;‘apy_org_in £
0 Z T
577 /%/ 2
pil/i 2 s, Pt %’-f’;tifzei//
7///7// 2
7 7 5 £
. _
\ Fra, 34
.w\:.\".

N\

\ W
4

The given relation is equivalent to the snecessive substitntinns
DZ=e, @ W= (Z 1 DHZ — 1), (i) w == log 7,
where Z=X4+iY W=U + iV,
In Fig, 34, Iet 2 start at mfinity on 0B and move rond the
boundary CHBAD of the given strip. Here ¢ and £ denote

points &t an infinite distance from the origin—actually they
are the same point, since, from the point of view of the
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theory of functions, there is only one point at infinity in the
complex plane.

When 2z ls on OB, £ —exp (z + in) = —exp(z) and 30 Z in-
creases from-—— o to — 1. When 2z movesalong B4, Z = exp (i)
and the point £ describes (in the clockwise direction) the unit
cirele with centve at the origin from the point B(Z = — 1) te
the point 4 {where Z has the same value as at B). As z moves
irom 4 to D, 2 == exp (2 — iw J= — exp (27 decreases from — 1
to ~— oo, O

Apparently the lines BC, AD in the z-plane are tra.nsforwl{léa\
into the same line, but, if we cut the Z-plane along the realaxis
from — 1t0— = , we can regard the upper and lower edges'of the
out as the lines which correspond to BC and 44 Selajmctively.

I'he interior of the strip is now represented oh the area
outside the circle in the cut Z-plane. To this‘area we now
apply the bilinear transformation (ii). P\l

As Z moves along OB, W is real and deréases from 1 (when
£ iz infinite) to G at B, where Z = — I\ \When Z moves on the
upper half of the circle from B tc’.{’.r'; arg W is constant and
equal to — 7f2 while W varies from zero at B to an infinite
value at &, Thus the lower b}il‘&lg,:gf the imaginary axis in the
W-plane corresponds to The tpper semicirele in the Z-plane.

When Z is on the lowerdialf of the circle, arg W = #/2 and
W varies from an :inﬁnj@e,\mlue at B to zero at 4; therefore
the point W moves GKOWD the imaginary axis to the point 4
(where W = 0). Aleng 4D, W is real and varies from 0 at 4
to 1 at I O

The area obﬁdii\led in the W-plane is that to the right of the
imaginary @J{ig}ﬁ'ibh a slit along the real axis between the points
W == 0, B 1. This area is now transformed by (ill} in which
we shall'give the logarithm its principal value.

Wenbave w = v + v = log B - i, where B = |W| and
drisehic principal value of arg W. Un B4, v = § == #/2 and
wN= log R) varies from -+« at B to — o at A: on BE,
¢ = — 7f2 and % varies from — = at Bto + « at £. On 4D,
%= d =0 and u varies from — = at A to zeroc at D: on
OB, v = ¢ = 0 and u varies from 0 at C'to — « at &.

The corresponding area in the w-plane is thus the doubly
tufiniie strip between the lines v = -- wf2, there being a cut
along the whole of the negative part of the real axis.

Counformal Mapping of a Spherical Surface on a Plane. Lot
YA (Fig. 35) be a fixed diameter of & sphere of radius & and

QY
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centre . Draw threugh & a pair of tangents SX, Y sueh that
/ X8F iy 2 right angie.

The PUP.olOil of a vallablp noint P oon the swrface of the
aphue 18 elesrly deterrained Hy the angle ¢ betwsen t;
PEN, XN and the angle § between 08 and OF.
angles muy I spherical co-ordinnte:
angle é, w fnm e the ?f-r-m”f-nr‘e (;T"P '\’i’ii} hf‘ medsnr

\ 4
. M\%\ n i
\Cs J é :

O Fruz. 35
x'\n
e W

- ' i,
ran‘sg»?rmn — o to - 7. The angle 0, which is simply refated
tehe latitude of P, ranges from 0 o 7.

N i 4 e kept constant and 4 varies from — wlo Lo, £

T

3 3‘\.‘..
paratlel of latitle)
and centre 3, which is the foobt of the
1o 8N, if¢ia constant and § varies from
& Sto N along o great semicirels SFEXN,
s’iazm o P Sineo 1}19 planes APB, 8PN are
Tamhs rcienlar, the ares PB, PN intersect at right angles at P,
Let Pand # D e
L8, 'Li'l'}.up
Then the m

& & sl clvele APB on the E:"phf’}e (&
wi Ub Ihdn*

L3 -
LA

shbouring points on a our ve dm wion the
wo-ordinates of P hemg( -, - BE),

wents the paraliel of it Ludu through
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F i P,, such that the are PP, = « sin § . 3¢, and the parallel
istitude through P’ meets the meridian of P in Py such that
are PP, = asf,

e have thas constravied an element PPP Py of the surfuce
© the srhere, all four angles of the sloment being right angles,
fand & are sufficiently swmall, we yupy treat the botunding
traight Lnes, and teke the area of the elewent to e

&6, ~
alement of length ¢ on the serface 3 the length PRJ
s given by O\
J’PJD 4= .{;PL“ e .{J.é'}-‘:", N\
whenos 85% = {0 in? ) (545 -+ copo® O :3922...'}‘
1w put p = log tan $8, we have \\
Jy == cosec B . 86 and sin £ =< Jesh v,
Zom which it follows that AN
8% = (a? sech? w) (6% ALOU)
and that P\%

Ne/

tan P,PP == P.P'IPP,
<= 3fHf(sin 0 w9
= W%igqi;}vaj%’l ibrary.orgin

If P, with spherical cpfOrdinates (¢ + A, § + A8}, is another
noint cloge to P and thedarc PP’ — As, we bave, in a similar
way, N

AR = (g2 sech? ) (Ad? -+ Ay®)
and ian 1’1R " = ApfAd, where Ay = cosec § . AD.

Now t@ké\gb and w to be the rectanguler cartesiac co-
ordinates of a point in a plane and plot the points Q, 9, Q"
with go*ordinates (¢, ), (¢ 4 8, v + o), (6 + Ad, v + Ay,
1‘esE§§t-ixfe]y. Then :

2 QU = 8t - By, Q= A AP
&nd the gradients of the straight lities @, Q" are dypfép,
AypfAd, respectively.

Hence QQ'/QQ" = dsfAs = PP'[PP”
and the angles Q'QQ", P'PP"” are equal.

The elementary triangles QQ'Q"’, PP'P" are therefore simnilar
and the spherical surface is represented conformally on the

¢, p-plane.
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[v73

The meridians orn the sphere become the straight ling
¢ = constant on the plane, the values of the congtant rangin
from, — » to 4+ =; the parallels of latitude (8§ = constant) on
the sphere become the straight lines ¢ = constant in the plans.
As 6 varies from 0 to y (= log tan 46) varies from -- ¢
to -+ o .

Thus the whole surface of the sphere is represented confor-
mally on the doubly-infinite strip between the lines ¢ = —'\ T
The map so obtained is called Mercator's Projection.

It will be noticed that any two curves which intefgect on
the sphere at an angle « are represented by plane“Cury s
intersecting at an angle % In particular, sinceiany straight
lire in the plane map cuts all the meridian lides\at the sana
angle, the curve on the sphere, which ecpffésponds 4o ihe
straight line, cuts all the meridians at the.é‘a,-\me angle. Buch a
curve is called & rhumb line or lowodrome.

Having constructed one conformal whad, we can now derive
an unlimited number. For the figuré In the ¢, y-plane mov he
reprasented. conformally on the plagie of the complex varishie

z by an infinite number of relations of the type

z = fig T y).

Taking wwr abidg (e iy)),

we obtain the stereogituphic projection in which the meridisns
are the lines arg z &='constant and the paraliels of latitude ure
the circles |2 =% ®ofistant.

1)

Ol EXERCISES
L. I 21 and if the point which Icprescnts = describes a cirele of
1~a,dius:c\\%x:ith ibs cenfre at the point « -+ 15, show that the point w
describes’ 2 cirele of radius efin? + B2 g2y,
H P represents z and & represents {1fz) .- {3f4)-- 1, find the locus
ofq) when P describes the cirole [#—2] = 2.
"y 2. In an Argand diagram the point 2 moves along the real axis foen

yF=--11f%0z= 4 1. Find the sorreaponding molion of the point
(1 —4z)fiz — i) (UL

2. Prove that the relation w — (k2 + 1}f(z 4 %), where L is any real
number obher than 4 1, transforms the airele | 2| = 1 into the civele
| w} == 1. Prove also that, if » — exp (i) and arg (w -+ 1) = ¢, then
{(+ 1) tan ¢ = (kb — 1} tan 46, (I5 0

4. Show that, in a bilinear transformation W= (ug - B)f{ex |- o),

~ the ratio [z, — 2, Wy — 2531 [z, — Z)f{2 — 7)1 remains invariant.

Find the form of Lhe transformation 7 which feaves 2 — Land z =4

unaltercd and transforms 2 - Linty w = = 4,
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Dy means of an auxiliary transformation ¥, which transforms i
tn U and 1 into «, show that by the transformation 7' any circle
sugh the two points 4, 1 is transformed into itself, Hence describe
the general character of the transformation 7. (7.5
5. Prove that a bilinear transformation transforms any circle into a

eircie or a straight line,
ibtein the bilinear transformations which transform the circle

| 2] = 2 into itself, the point 4 into the origin and the circle

i #] = 1 into a line parailel to the imaginary axis. (U.L)

€. ¥rove that the necessary and sufficient condition that four points
iz the g-plane should be either collinear. or csoncyclic is that theim\
ef-ratio should be real. e\
7. The bilinear relation w = f(z) = (4z + B}z + D) is suchvthat

lwo>agasz—> w0 ‘!

in

1

{ii} z—> basw—> w; +£2)
(iii} there is only one numher ¢ such that c.?-g\f(c). Tind
A, B, C, D in terma of a, b, ¢ and show that de.= ¢ L b.

Show that, if 2, does not lie on the straight line A joining @ and &,
then: the sed of points ¥ :.\
i By = f(zl)s By == f(zk}, ) s‘z.n>1 - f{zﬂ)
2ll lie on a eivele whick touches 1 ab e. Progoithat z, - casn— .
AN (U.L)
8. Prove that the transformation \
w=[{1+ 2P i Tdkﬁuﬂfiﬁﬂ'aﬁy%}?gfhﬁﬂl — 2°)]
maps the region | 2] < 1, 0 <.arg’z < =f3 conformally on |w| < 1,
Discuay the correspondence b»{.?ween the boundaries of the two regions.
N (U.L)
8. Examine the tm@‘arnmion 9w =z + 1fz and discuss ite
singnlarities. A
Show that | w| = 1 dorresponda to either
MNLi] = 2 or |z+4] = v2. (U.L.)

10, Show t;]ga{s\t‘_r'xa asquation
\t@\-’b)we— 2ew + (@ + b) = 0, (s > b > 0),

1‘31"1'&3911153%9 interior of the circle | w | = 1 on the area in the z-plane
culsidegbe ellipse {zfa)® + (yfh)? = 1.

Disgtiss the representation in the z-plane of the circles

V |w]=rlw]=(a+bfa—b,
and of the line arg w = 2. \

11. Bhow that the transformation wiz - 4)? = 1 rhaps the interior of
the circle | 2| = 1 in the z-plane on the domain outeide the parabola
2R{l — cos ¢) = 1 in the w-plane {B, ¢ being polar co-ordinates of a
point in this plane). )

Sbow that the same transformation effects two mappings on the
z-plane of the domain ontside the parabola ; the one cn the interior of the

cirele | 2} = 1 and the other on the interior of the circle [ z + {227 ! L———-) 1.
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12. Prove that the reladion w = isink 2 mops the gemi-dnfiniie
rectangle & = U, — »f2 < ¥ < #{2 in the z-plene on the upper haif of
the w plane. Show thab the ratio of the arca of the fixdte pave of 11
rectangle cut off by the line 2 = g to the correspouding arca in ihe
w-plane ig dafsinh 2. (LA

13. A region in the z-plane is bounded by two ewta alony the real o
from 1 to + @ and from — 1 to — o« . Variables w and Z are connootod
with z by the equations z = cosh w, Z = sinh w. Find the regic
the - and Z-planes which correspond te the above vegiun i i
z-plane. N

14. Show that, by the transformation w = & oos ! mifa}, the
above the axis of » aud betwéen the linas = o= o by tedms
joto the whole w-plane. Datermine the region in thesepiahe
corresponds to the interior of the square in the z-plane Bennde
lines N

® = daft,y == a5 = 3l
ANy

15. Prove that, by the trancformation w SN3nh 2, the region oF &

#-planc, for which

@ @i 0, w2 P b

{a real and poribive}, iz transformed in’t}) that part of the positi
rabt i the sc-plane which lies outShe’a certain airelo having
on the real axis, N o

Show also that the part of (hg 2-plane for which

WwWw d’f}}%{fﬁb’}iaﬁ}%ozf‘gﬂ W T
is transformed ints the fterior of the same cirele, cub along 1]
axis from the ciroumgtertues 4o the point w = 1.
16. Bhow that ’gh::)&e].ai-icn w = 22f{1 -~ 2) maps the rogl
a straight cut Metyrren the points w = L 1 in the w-ane o
half of the z-glarte,
17. Bhow ihat ¢ == daw eot aff1 -k 2w cob u - w2, wheve

P\ 0 < x « wfd,

& oo
gives, aa}n):lforma,l reprosentation of w when w iles in any Hoibe vegion
ezéc{u,; g the points w == - 4, cob 3%, — tan 4.
{"Frove that, when w describas the cirele | ap | = 1, 2 describos an are
&f'a circle subtending an angle 12 at the centre,

how also that, when w describes the real axis from — Lan iz to

" eot 1=, z describes the whole of the real axis, (T L)

18, If w == 2% Bz ard the point z describes an ellipse whose foci
are ab the points 2 = + 2, prove that the point w deseribes a confoeal
cilipse. (0.5

18. If ¢ + iy = coth (u 4 i), express  and ¥ in terms of w and o

*Show that the curves in the ay-plane given by v = const. are clecles

through the poiuts (1,0}, (— 1,0} and that the curves w = const. are
circles orthogonal to these.

Determine the region in the zy-plane corresponding fo the interior
of the rectangle bounded by w==0, % =1, v =0, p- af4 in the
wv-plane.
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26. Bhew that the relation w = 2 - log 2 maps the upper half of the
-piane an the upper half of the w-plane with a slit along the line
R T

23 1w == ¢ cos (k log 2), where ¢f = u? — B and rosh thaf2) = afe,
prove that the area jn the z-plane given by x> 0 and I = | @i = e
in transformed conformally into the tuierior of the sllipse

(afa)® 4+ (ufb)® =1
™ the weplane out along the lines joining (e, 0) to (2, 1) and (— e, 0) ,

(= oty {4} {7 L.}
2. Discuss the transformation z = tanh dw. In partioular, prose
that the curves given by » = const, and » = const, form two setob
xad civeles in the z-plane; and thai the interior of the unifeircle
which falls in the positive quadrant corresponds to the interigr 8f the
2 roectangle in lhe ew-plane of which the finife sides{are given
Oy =0,7 = xf2. ANELL
: Show that the relation w4 == aicot iz (o > 0} maps” the sewmi-
infinile strip in the z-plave for which 2 2 o> 0450, upon that
balf of the w-plane which lies to the right of the laginary axis and
W h is cut wlong the real positive axis from x Se/to r = 4 o, and
iadicale the points at which conformal reprcse’m\ation breaks down,

Two eircles with real limiting points abNEN4, 0) are drawn in the
et re-plance whose centros are at the p(iihté {mer, O}, (go, 0}, where
» > g 1. Bhow that the space betwgan, These circles is mapped on
the interior of a reetangle in the z-plangswhose area is

log [(p G\\r\?v{ﬁﬁ‘t_\ali.lj{ﬁ%‘ﬂ:yl_gn(%_i_ll1}] tv.L.)

24. Bhow that the region on™Ghe sphere which iz represented in

Mercator’s Projection by a reetougle bounded by the lines
¢ = ¢;&:¢x\= B T VLY T P
is of area a®tanh p, — tﬁq\ﬁ Wl {hy — dals

Show also that a gdat circle on the sphere is represented in the map

by a eurve whose eaition is of the furm
N\ tanh psin (¢ 4 =) =k,

iy

where x and ki 4rc constants.

24, Shq‘h\'th’at, if {¢, 8) are the spherical co-ordinates of 4 point on
a rh'umb.‘iiz%, A¢ = Blogtan it + ' = 0, where A, B,  are constants,

26, Brove that, in the stereographic projection, a rhunb lne is
roprffertted by ap equiangutar spiral.

2§ Hhow that 2 stereographic projection of a region on Lhe sphere
L}ay be obtained by conical projection from & on Lo the tangent plane
o the sphere st ¥ (Fig, 350,

25, Bhow that the tranaformation

W o= {az § 1}}{,?.‘ -ty
where @ is any real number except =1, t-ra,ms_forms the girele |2 = 1
int | = 1, If, further, the circle [z— 1]~ 1lis transformed into
pwo- 1= 1, find the value of a. ) (U1
01 p = 2 — 2 + (1f2), and | 2| = 2 show that the point w lies on

#ii eilipans whose major and muinor axes ave %, 5 respectively. (I7.L.)
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CHAPTER VI
THE SCHWARZ-CHRISTOFFEL TRANSFORMATION

Conformal Transformation of a Half-plane into a Polygen. Lot
P be the fixed point on the real axiz in the z-plane at whith
z == ¢. Then if z has a real value greater than a (repregented
by § in Wig. 36) the principal value of arg (z — alis/zeco.
If the point z describes the semicircular are SR with P as
contre, arg (2 — @) increases hy N

This is stifl true if the radius of the sefibircle iz made
infinifesimal. Hence, if 2 iz vesiricted to reaﬂ%alues, it may be

R 2-Pie”
- Qm W, C:_‘\.
Z=a a=h’  zec 2=k

"
g, 38
. W .d I'fll:il}b'i‘al'y. g in . . o
said that arg (z — @), ‘winell 1s 7 'whéh the point 2z is on the loft

of P, decreases to zep When z, moving from left to right along
the real axis, pasgeﬁ,\through P.

Suppose that )b, ¢, . . . kare n real constants arranged in
ascending ordew, and that

A L e O

\&Fhe%@‘,"ﬁ, . - .k are % real constants each lying belwomn
~ Xhand 1. Consider how the argament of F {z) varies as 2
moves along the real axis from — o to <L o,

() Whenzison the left of a, the argument of each of the numbers

h
) 3

r—t2—bz—¢, .. . 2—k

s mand. when z passes through a, the argnmonts sre unaltersd
except that of the first, which desresses by = Consequently.
when 2 passes through o, the srgument of Fiz) increases by o

Ag 2 contines ite motion between o and b, arg Fliz) dons
not alter, but, when 2 passes chrough b, arg j(z— 617 in-
creases by fr and the arguments of the other factors of Iz
are unallered,

i

s
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when z moves from — = to + » along the real axis,
g #'{2} inereases by a total amount (w + 8 + v + . . din,

Xow suppose that w is 4 function of 2z determined by the
differential equation

dujdz = LF(z),

L 15 & complex counstant.

fwactional relation between w and 2z, which would be
ined oy integration, establishes a conformal transformation,
the z- to the w-plane. Cur present purpose is to find the)
of the w-plane which is transformed into the upper(galt
of the z-plane. P |

e ghall assume that, when 2 =~ g, b, ¢, . . .,?c;'fao_: the
vonding values of ware 4, B, 0, . . ., K, U, séspectively.

¢ are correspondinginfinitesimal ’
srements in the two variables, we
avs, from the differential equation,
arg & == arg oz - arg Fiz) -+ arg L. g‘\ B,

- Flang mr
n‘
O D

Az zmoves from — « up to 4, along,
al axig, both arg éz and arg Az}

H
iy I

. A * '
remsin conistant and therefore wn ayes uy L e
- r . RIERTIRTES b TALLLL 'al'y.m‘g_m ',L’ﬂ' -
Drorn € to 4 ia such a way thatary dw 7] A

is conztunt. The path of w i therefore Fre. 37
the siraight line {/4, ’i*,\

When 2 passes threngh @, arg F(z) increases by or and
tnerefore arg dw iuerases by the same amount. As z continues
its motion along lin'segment of the real axis between @ and b,
arg dw remaing(denstant and therefore the poiut w moves
along the straight line 4B which makes with /4 an angle
am measuggddin the positive sense,

Similaxly.” when z passes throngh b, arg dw increases by f=
and, gdwaimoves from & to ¢, the point w moves along the straight
neNB¢ which makes with 45 an angle S~ in the posifive
st and so on. After z has passed through %, w mcves along
the straight line {77 which makes an angle xor with J K.

Henve, as z describes the real axis, w deseribes ths complete
perimeter of the {n + 1}-sided polygon ABC . . . KU. Bince
the upper half of the z-plans is on the left of an observer moving
with z, the interior of the polygen is the corresponding area
n the w-plane. It is only at the vertices of the polygon that
the transformation is not conformal; for these are the only
Doints at which duwfdz becomes zero or infinite.

Q.
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It will be noted that, in general, one vertex of tha ;
in the w-plane is the point { which corresponds to the
at infinity in the z-plane. The exterior angle of the ;
at &7 iy

2 — (x -+ Btw . .. -+ e
If, then, e+ FFy+. .ok 2,

the points K, 77, 4 are collinear and the half of the =
transformed into an n-gon ABC ., . . K ail of whose ™
correspond. to finite values of », \

O

. e e L\
In drawing Fig. 37 it has been assumed that w17 . . | &
are all positive, The interior angles of the polygon Bre (1 - y)x,
(I— @), . . . and are all less than = so that the polyzon is

W= Plare. \ .
D:

U s-’pb)\fr‘
A

www.dbt:atifﬁb
A Fi 38
e\ .
convex. If « iginégative, the interior angle lies betwesn 7
and 27 and the _\)lygon has a re-entrant angie as in Fig, 34
Transformé@tion of the Interior of & Polygon into a Balf-niane.
Now suppoge that a given polygon P, of n sides. in the 1- plane,
is to he,seansformed into the upper half of the z-plane. The
figurgntway be convex or may have one or more re-entrant
angles. In either case no interior angle exceeds 2. Taking
the: vertices in the order which corresponds to the positive
_¢pense of describing the perimeter, we can measure the interior
\"\;“ angles (1 — a)e, (1— By, . . . (1 — x)m. The constants =, §,
+ -« & are thus known {their sum being 2).
Suppose first that no vertex of P is to be transformed into
the point at infinity in the z-plane.
Construct the fanetion

#(z) = (z — a)~«(z — B)=F. . (z— k)

where the #n constants @ b, .. .k are real and in ascending
order but thoir actual values are, as yet, unspecified.
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Tabkino
LAETNE

dwldz = LF{z},
which iz eqrivalent to the relation

weL f Fladz +

~ and M are complex constants, we have a transforma-
which, ag we have seen in the previous section, converts
rer half of the z-plane into an n-sided polygon P’ in
visne., The interior angles of P are (1 — v, (1 — S)m,
— «)w, while the positions of the vertices depend\'én\
wiues chosen for the constants. N

s two polygons P, P’ are thus equiangular bt if =
coeeede 3, they are not necessarily similar. We havgto show
1hat the o real constants 2, b, . . . kand the complek\constant-s
7. amd M may be chosen in such a way that P’ ¢ojuicides with P,
. two equiangular polygons will be sithiler if the n — 3
. between n — 2 consecutive sides of P are equal to the
ssponding ratios for P, This givesdh 3 relations between
iha constanta, O\

s make the figures coincide, il now sufficient to make
two vertices of P coincide withufhe two corresponding vertices
of P. This gives four*hiore PEpslibrar jawe for each vertex).

Altogether, we have n ] relations to be satisfied by the
# real constants and the-teal and imaginary parts of L and M,
ic. there are n - 4¢cbnstants connected by » 4 1 relations.
It follows that three o\fthe constants may be chosen arbitrazily
end that the remaiwing » + 1 are determinate.

1f one vertex ef the polygon is transformed into the point at
infintty in t-:}?e" z-plane, the corresponding factor must be
omitted frowm the expression for F(z); o that the total number
of {real) Sonstants is now # + 3. The argument used ahove
shows Ehat these are connected by # -+ 1 relations and therefore
twasand only two, may be chosen arbitrarily.

In practice, it is convenient to give arbitrary values to the
appropriate nember of the real constants which correspond to
the vertices.

From any one transformation which converts the w-polygon
into the half z-plane, an infinite number of such transformations
may be derived. As was shown on p. 87, the real axis in the
z-plane may be transformed into the real axis in the plane of
another complex variable Z by the relation

(ezyats) = (L2 ZinZis),
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where 2y, 2, 2, 2, Z,, Z, are all real hut otherwise arbitrary,
If the points Z,, Z,, Z, occur in the same order a8 the volnty
21, %, %, then she upper halves of the two planes correspond,
We now have two suceessive transformations, from w to 2
and from 2 to Z, by which the w-puiygon becomes the upmer
haif of the Z-piane.
The relation which converts the polygon into the talf-niane
is known as the Schivarz-Christoffel Transformation. Q.
UXAMPLE 1. A trisngle AB( in the w-plane with \a_r_}gies
{
w-Plane N

A(W= E:U'f) C

U=t
=0 ...,‘\ -

=) =0 ¢ O ozany 207 g
¥re. 39,8

"

(L— ajm, (1 — Blar, (1 — o, ig wrsnsformed into the upper half
of the 2-plane by the relatio™

dufdivey SpadliByavy ereiy s, oy
where, since the sy ef the angles is r, « +8+v=2¢ The
values of the reak sohstants ¢, b, ¢ may be chosen arbitracily.
In general, the differential equation is not integrable in terms
of elementarydfanctions.
There ig\dparticular case which is of some importance in
practicesyand in which the integration is easy, viz. when
2 =0 and v = 1. The triangle then becomes s semni-
infimite strip. By suitable choice of axes we can take it to He
intfe positive quadrant and to be bounded by the lines » - 0,
m:’?%."_: 0, vy The vertices 4, B, ¢ (Fig. 39) are then the
\ ) points given by w — vy, 0, =, respectively, and we muy take
the corresponding points on she real axis of z 1o be given by
z=-—14+1 =, respectively,
The required transformation will be given hy

dwfde = Liz -} 1)}z — I)y-4

since the factor corresponding o the vertex ¢, at which z is
to be infinite, must be omitted.
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Tategrating, we have
w = Lf(zL 1)z + M

=ZLcosh—1z 4+ N
= Lloglz + (z— 1} 1 M,
where the logarithm has its prineipal value.

At B, w==0 and 2 = 1 and therefore M vanishes. At A,
o =1ty and z = — 1: hence L i determined by the conditiofty,*
iy = Llog[z + (2 — D \ ™
wuen z == — 1. Now, if2is on or above the real axis, itsPrincipal
’ «\.’
wFlane \
A=) 0 N fane
iy . ¢t &
wey Y-
i N / .
1 B\ ’ \‘
L N S — L & N’ ] ¥
a = oo D i ; !
v=o  Geo N A B ¢

a3 Z=~] =0 2=}
WRW .Cﬁiggl% bral'y_org_ in

argument ranges from 0,40, %, Consequently the appropriate
value of the logarithn a@ we= — 1 is iw and it follows that

N wf.
The equation afdhe transformation may be written
\\" w == (pfor) cosh—1z
or A4 z = cosh (mfu).

If ngwi e apply a bilinear transformation which converts
the ugner half of the z-plane into the upper balf of a Z-plane, we
oBitain a transformation from w to % which has an effect similar
to that from w to 2z, For instance, take z = — 1 [Z and we
have

4 == gech (wwfe)

as the relation which converts the strip into the nupper half of
the Z-plane in such a manner that the vertices B, O, 4 become
the points Z = — 1, 0, !, respectively.

Examrrz 2. Consider the doubly infinite strip bounded by
the lines v = 0, v = », (Fig. 40).

Q)
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The strip may he regarded as the limiting form of & rhoin
ABCD (where A and € are the points w = in, w = &
tively) when each of the angles at 4 and €' is made ¢
and those at B and I become zern. With the noti
. 110, we have

1—z= 1-—-')):13_11(1 1—-521—5#- 0,
ie. o == 5 == { and ﬁ:é—— i.

The real values of z at B, €, D may be chosen&ndy
provided that they arc in the proper order: f&r)uim:
we take them to be 0, I, =, respectively. Thetxdusfo
is then given by »

duwfdz == Lzt \

which gives w= Llogz '-b}f .

Tt will be noted that, since 5e=\8, the value of z ut 4 o
not oceur expiicitly in the equation. On inserting the vl
at € (w = 0, z = 1} we see that" M vanisher

At any point on BD, z jgpesitive and w is real and
the -'Jon_gt-ant- %v}ygggmiﬁﬁ}agryngg}ﬁtermi.nel i{.s!&.c
we consider the transformatioh frém the z- io the
the semi-circle abogethe real axis which bas wudh ra
centre B. At any Q‘o\ﬁlt on the are, 2 = exp (16), where {
and so \J

N

O o= -} 0 = Lif},
from W’}%GB “we have
\\ %= 0,and » = L.

.@‘;nerefore the semicircls corresponds fo the straight line A€

£\in the w-plane.

) Y

As z describes the are in the clockwise sense, log z decrcases
by 1r and, as the corresponding point w moves from 4 to 7,
the value of w decreases by v,

It follows that

iy, = Lir
and so0 the equation of the transformation mav be written

w = (v,fm) log 2
or z == exp [mwfy,).
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PLE 3. Transform the doubly-infinite strip of the
: between the lines » = 0, » = =, when therc i3 a slit
line # = », from the point w == i»; to the point at
v {Fig, 41). '

he given fignre may be regarded as the limiting form of the
storal ARCD when the angle at 4 becomes 2n and all
or angles become zero, The vertex 4 is at the point
andd all the other vertices are at infinity.

¢\
Da 25 ("
. U7k
D= Aws=iv) N
Ee—  U=Uy S - Flane
8= \Vv=o —=C
D
Z—P/a?g\é:s\ Piz)
C— DN h B -0
www@"ﬁ%&ﬁ{&rm%ﬁ&‘g_in Z=]
Fag. 41
. 2\
The constants are n(g&‘gﬁven by
whernee oL =y =98=1

We can tai;'(\s;%'h"é values of zat D, 4, B, Ctobe— 1, a, 1,0,
I’e&spcctivel?\i,where @, which is vet to be determined, lies
betweon <& ¥ and 1. The points are then in the correct order.

The Qi?;insformat-ion is given by

\”\ v dwfde = Lz + 1) Yz — a) (z— 1)1,
since the factor corresponding to C has to be omitted.

Using partial fractions we may infegrate this in the form

w==3L(1—a)log{z— 1) + $L(1 Fa)log(z + 1} + M,
the logarithms having their principal values. )

Let a point z move from — = to - = along the real axis

in the z-plane, making small semicircular detours above the
axis about the points D and B in order to avoid the singularities
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of log (z 4 1) and Iog (z— 1). As the point moves round the
semicircle which has D as centre, log {2z 4 1) decreases by in
while the variation in log (2 — 1) approaches zero when the
radius is diminished to zero. At the same time, the corre-
sponding point in the w-plane moves from a position near
D on OD to a-position near D on DA and so w decreascs bv an
amount iz — ). )
Equating the discontinuities in w and in the expressitit on
fhe right-hand side of the equation of transformation, e have

i —w) = 0L + aYim. N
Dealing similarly with the point B (2 = 1),‘We‘ deduecs that
ity == BL(1 — aign
whence it follows that AN
L=1 pﬁda = 1 — (2, f},

The value of the constant JHM“may be found by using she
values at A, viz. w = v, zem b,

if the &lit ia misiwagn;‘ Ctween the outer boundary lines
2 = nf% and o RASRERREY NI 27 sl vanishes ~nd
the eguation bakes tédsimple form

w@‘%’log (25— 1), or 2% = 1 b

Examprs 4) Consider the doubly-infinite strip of which the
width changes suddenly from 4 to & (Fig. 42). We may regard
this fignre/as the limiting form of a quadrilateral ARCD in
whichdd) is along the line v = %, B is the point w = £k~ k),
anf\g"the point w == 0. When the angles at B and ¢ are made

agital to 3n/2 and =f2, respectively, the quadrilateral opens out
W ~ifto the strip, and we have, in the nsual notation,

N/ T—o=1-—¢8=0, i—-f=23/2, 1wy == 142
and €= &:= 1, =—1f2, y=1/2
Taking the values of z at A4, B.C. Dtobet, 1,¢ o, respeoc-
$ively, where ¢, which exceeds unity, is yet to be found, we
have
dwjdz = Lz~Y2 — 1}z — ¢)—t
= Lz — )=}z — 0)-1(1 — 27,
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Hencs

we L § (2= 1) Ha— o) ~idi— sz—l(z— 1)-#a—c)~tds + M

=L ;f{z-—- 1)-—i(z—c}~s‘edz+Lf(1-s)—é(1-cz)—%dz, + M,

v

where £ = 1z,

Substituting 2z = ¢ cosh? § — sinh? 0, O
we have A\
¢\
(e )Mz — )~ tdz = 20 = cosh— [{22— ¢ — 1)f{c — 1)1
N
A em = — 07 A )
JTEFLI yi w=npo ™
7=0 af‘; ! I Eoo \ 3
L Buw=t(k-h) ! \\\
Py A A i INVE
i _ w—PfanK;,
% II ‘.. \
f"é ) 4‘ o bd
e ETCRY RS
7T ZERN ¢
www.dbradlibrary.org.in
~ ’3{!’3!@:?1}(; 8
AW ! '
\x=‘d 2=7 Z=C
P, Fie, 42
Again, if o

D7 ot = cosh?d — ¢ sinh® 4,

O

f{l — s)&(\f'— of) =¥t = — 2%

AN ~ — ¢~b cosh=* {[(¢ + 1)z — 26 [(c— )]}
\’\[‘}?é rolation between w and z is therefore

w=Loogh~2[{2%—¢— 1)J{c —1}]

— Lo~} eosh=Y[(c - 1)z — 2e]f{{c— L)z]} + 3,
where L, M, and ¢ have to be determined. .

Now the above expression for dw/dz in terms of z has a simple
pole at 2 = 0 and the residue there is Lc—%, When the point

2z moves counter-clockwise in & small semicircle about 4(z = 0)
in the z-plane, w increases hy b, since the point w moves from
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the line v —=k— A on to v =4k Hence, by cquating the
integral of dwfdz round the semicircle in the z-plane to +ho

known increment of w, we have
wile—t = ik,

(=g
. B

(Bee Example 20, p. 78.)
Using the valuesat B (w= ik —A),z=1)and C (w =0, 2 - ¢
we find that \
w1 — oY) + 3 = i(k— k) Ko
M=0 N\
and therefore A
L= kfnr and ¢ = (kfh)2, ‘,,'s' N

The equation of the required transforma’;iq‘fn‘\is

w = (kfm) cosh =1 (22— ¢ — [)f{e— 1}] ) '
— {hfm) cosh~* {ifp s 1)z — 2ci/[{c — 1)z
¢ \ v
EXERQISES
1. The z-plane is sli{ along thétsemi-infinite lines z = -+
Prove that the region bounded»'h)-“the edges of the slite can
formed conformally ipto fhe l{u’fﬂﬁ Fin @ of & complex
. d o i i1
Z{= X 4+ i¥) by E\g&gs ogw equation gflghe {orm
deliZ = Ai(Z% - 1)jZ.
where 4 is & real conjéy&nt. Determine the value of 4 and cxuress #
in terms of Z. N\ (U 0
2. Show thatdhe region, in the positive guadrant of the w-plane,
bounded by thedines v =0, v = 0, w1 (0> 1}, v o= 1 (6> 1}, is
Lra-nsformed‘i{&tb the upper half of the z-plane by the relation
9\ mie = cosh~l z — sin—3 {1f2) + =f2.

8. SAoW that the relation
0= Balz + 1F 4 log [tz + 1 + 1= log [ + 1D} — 17 + i

3\‘&3:;53 the upper half of the z-plane on the positive guadrant of the

AN\“af-plane with a slit along the line v - », w > A, whero w = A 2 47

/ when z = 1fu, both @ and % being real and positive.



CHAPTER VII
APPLICATION TO POTENTIAL PROBLEMS

Green's Theorem. On p. 66 we obtained Stokes’s theorem in
ity two-dirmnensional form

f (pde + qdy) = ff — pdady . : Sj‘m"

%

whers suffises denote partial derivatives. N
Let &, @), (x + d=, y - dy) be the ends of the arg @y of the

aurve O, (.nd let y be the angle between the x- aﬁ‘l} and the

inward-drawn normal at a point in ds (Fig. 18, ph 65). Then

dx = cos (y — Lm)ds = sin yds ;.\ .
and dy == sin (y — §m)ds = — <08
In (1) put p == ¢0, and ¢ = — @by where ¢ and 0 are any
functions of @ and y which, along yw:th their first derivatives,
are finite throughout tie area E-llded 2. Then

IGI.I T‘alé{ ‘? in

pdz+g dy - $(0;
L8, cos y + 0, 8inp)
(2 H(262n)ds,

where da is the eleni®ut of the inward-drawn normal.
Hence equation{(l)’"mav be written

A é"oé‘ian)&\~—~ [ 6100+ 000+ .+ ypu1deiy. 2

On mi,elchangmg g and ¢ and subtracting the result from (2},
we ham*'(xreen s theorem in its two-dimengional form

Y f [B(20/m) — B$fom)]ds
- f f Bdoe 1 ug)— (00a + O)Mady . (3)

In particular, if we make ¢ == ¢ and assume ¢ to be a real
potential fanction (i.e. du + ¢uy = 0), equation (2) gives

[peoonio =~ [ [ 4ty .

112



120 THE COMPLEX VARIABLE

It follows that, if ¢ = 0 at all points on the curve 1. the
double integral on the right-hand side of (4} vanishes. But,
- since the sum of two real squares cannot be negative, 4, aui g,
must both be zero at all points of the region bounded by O.
The function ¢ is therefore congtant and, being zero on ¢
must be zero at all points of the region. _
~Again, if 3¢/3n vanishes at all points on 0, it follows i the
same way that ¢, = ¢, = 0 and that ¢ is constant thredgliont
the region. R

Now suppose that ¢ and ¢ are two potential funefichs which
are equal at all points on ¢'. Since ¢ — ¢’ is a potential funaiion
which is zere at all peints on €, it vanishes atlallypoinis of the
region. It follows that there cannot be more‘than one pateniial
function which has prescribed values at all the points of a
simple closed contour.

Further, suppose that two potentialMunctions ¢ and ¢' have
equal normsl derivates at all poitftd“on . Then d—d s a
potential function such that jts nopmal derivate (9/3n) (4 — &%)
vanishes at all points on O, W must therefore be constent
throughout the region. Thudithe functions ¢ and ¢' ondy differ
by a constant. o .

As will be se¥itth WHAMRIAIAREAR this chapter, two-diten-
sional probiems in mathematical physics generally reduce to
finding g potentighduniction whase values, or those of its normal
derivate, are pyéstribed on the boundary,

Hydrodyna.;ﬁ»s. When fluid moves in two dimensions. ie.
in such a weythat the motion is the same in all planes paraliel
to a fixed\'plane, it is suffirient to consider the motion of a
sheet oPHid in one of the planes, which we can take to be that
of the complex variable z. If the fluid is incompressible and
fréeNfrom viscogity, irrotational motion {motion without spin)
Jstdetermined by a veloeity potential ¢ whose value at any

~ ;\point- (z, y) is & function of #, y, and, in general, the time.
N/ ¢ is independent of the time, the motion is steady,

The component velocities in the directions of the axes at
the point (2, y) are — 4, — ¢, The equation of continuity,
which expresses the fact that matter is being neither created
nor destroyed, becomes

Qsa:x _1‘ ﬁé-u-y = 0:

which is Laplace’s equation in two dimensions.
From p. 51, it follows that, if ¢ satisfies this equation, there
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ig a function of the complex variable 2z = & + %y which has
¢ for itg real part; thus

w=¢+ iy =J).

The function wy, which is the conjugate of ¢, is called the
stream. function and wis called the complex potential.

Since ¢, = w, and ¢, = — yp,, the component velocities at
(%, ¥} are — w,. p, and the differential equation to the stream

lines may be written L\

— dafy, = dyly. O
or ydr + pdy = 0.

al
S

On integrating we have the equation of the stredrd/lines in
the formt w —= constant. These lines are cat orthggonally by
the equipotential lines ¢ = constant. \

1.6l the wvelocity of the finid at the poi;zi:-%%, y) be ¢ in a
direstion which makes an angle o withuthe positive direction
of the v-axfs. Then OY

LR . 1
Yy Py = — G OOS 0 YRS ¢, =gsina
and therefore www.d b‘:ﬂifﬁ brary.org.in

duzfdz = erNY,
= &—":.’q({:(Js @ — T &ih )
pN \9‘ exp [#{m — a}].

Hence ¢ = jdu,[dx|and - — g == arg (dwfdz). ‘ _

By taking amyfunction of z as complex potential, we obtain
imniediatelyapossible form of the stream lines in an irrotational
motion il;!%\{;é dimensions.

Exampre 1. If w=¢ + iy = Ulx + 1y), where U is real
and MeRitive, the stream lines are the parallel straight lines
?/\”-f—:}éénstant-. Since ¢, = U and ¢, = 0, the velocity is every-
where equal to {7 in the negative direction of the z-axis.

Rxanpre 2. I w = U{z + iy)? the stream lines are the
rectangular hyperholas 2y = constant.

ExamrLe 3. Let

w= Uz + a¥f?)
= Ulr + a?fr) cos 8 -+ iU(r— a?fr) sin 9,

where z = 7 exp (i8) and U is real and positive.

3 —{T.122;

Q)
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The stream lines are given by
¥ = Ulr— a¥r) sin g — constant
and the line y — 0 redyceg to the circle » = ¢ and the straight
lines 6§ = 0, § — .
Since a stream line may be made g rigid boundary, we

obtain the complex potential for the flow past a cyﬁnderghose
trace on the xy-plane is the circle r — g4,

With the notation used above, O\
~— g exp (~— i) = U1 — adfz?) O ’
from which it is seen that, at infinity N

— @ exp (— fx) = 7. 'wj\.‘.

Thus at an infinite distance from the cylinder, ¢ — ¥/ and
@ = 7, l1.e. there ig parallel stream,i‘r%'wit-h velocity 17 in the
negative direction of the real axigd “

It showld be noticed that the \womplex potential cons’sts of
two terms: Uz which correspends to the paralle] stre.ming
and Uo?fz which representdithe disturbance produced b the
cylinder, AN .

Writing ze ~Winr -l (BYaLY WIRdR o equivalent to v ning
the axes through anangle £, we get

\w = Ulze—18 = alelffzy . )]

#1

as the compLex\\potenti&I for flow past the cylinder wher the
undisturbed: velocity of the stream is U7 inclined at an angle
to the nagative direction of the z-axis,

ConrprmAL TRANSFORMATION, Lete -+ iy — J(z) be the com-
plex (Potential for the motion of a sheet of fuid in the z-plane.
The houndaries, supposed rigid, will then pe curves of the

Jamily v — congtant, If we apply a conformal transformation
t\: "

z = F(Z)
from the 2- to the Z-plane, where 7 — X +4Y, we have
¢+ iy = f(z) =[fF(Z)] = ¢(z), Say,

the Z-plane, the boundaries being the curves into which the
original boundaries are transformed.
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By applying this principle, it is possible to deduce from a
known motion an unlimited number of others,
Examrre 4. It was shown on p. 93 that the transformation

Z =z a¥fz

converts the circle |2| = e into a straight line (a degenerate
eflipse) between the points Z —= 4 9a.

If we apply this transformation to the result {5) on p. 122y,
we ohtain the complex potential for flow past a flat plage\of
width 4a inclined at an angle § to the general direction,of-the
giream which, at infinity, has a speed U, N

Klectrostatics Suppose that clectric charges are fo distri-
uted that conditions are the same in all planes, parallel to
that of the complex variable 2. The electrie\Beld is then
iwo-dimensional and it iz sufficient to con;qi,ger points in the
z-plane. ' { &

The potential ¥ at the point z is a 1‘gdl}unction of # and y
which, if the point is free from charge, \sdtisfies the equation

Vas + Vg o0,

: . Abraglibrary orgin |
It follows that we eaﬁ‘“ﬁh"dj SE’?HJDCUO% of 2 which has ¥V for

ite imaginary part; thus '\
I/R%» U+ iV = fz).

The equipotential lines ¥ = constant are cut orthagonally
by the lines of foree’ U = constant. The equipotential surfaces
are, of courseperlinders of which the curves V — constant
are the crosg™séctions. Included among these are the surfacos
of conducters:

The coluponents of electric foree at the pointzare— ¥V, — V¥,
ancol"\sox'ﬁhe resultant intensity R is given by

N o RBovievi—Ue4ve— I W [,

By the conformal transformation z — F(Z), W becomes the
complex potential for a field in the Z-plane in which the equi-
Potentials are obtained by transforming the equipotentials in
the z-plane. The values of V are the same at corresponding
Points in the two planes..

Examrrr 5. Consider Example 3 on p. 115, which is illustra ted
by Fig. 41.
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If P (with affix z) is any point in the upper half of the z-plane
and 8, = /CBP, #, = /CDP, then the function
V== (kfm) (0, — ),
where k is real, is the imaginary part of
(kf=)flog (z— 1} — log {z -|- 1)} 2N
and is thercfore a potential tunction.

When P is on BC or O, ¥ vanishes and, whgﬂ }3 ie on
DAR, V =k Hence the function V is the potential when
BC and U0 are conductors at zero potential “apd AR is a
conductor at potential . The equipotentiallihes are cireular
arcs joining B and D. N\

On transforming thc figure in the z- p]flne by the relation

\/
w= 1L(1 —a)log (z— 1) + LA a)log (z = 1) +

given on p. 115, we obtain the {Orm of the pofentlal in the field
due to two palaﬂel plates, ab zero potential, when o plate at
potential  is placed betweeén them.

When the tmt%@ggul%m@%gg ;hetween the other two we
have
- \ - (Bfm) log {(z — 1)f(z + 1}],

. . = § tﬂ‘z . . o
where \\ 9 = 1 b e
Qurrent Flow in a Plane Sheet. Suppose that an electric
current ﬂc{{«%' in a uniform plane sheet of metal which coincides
with the.2-plane. The potential ¥ satisfies Laplace’s equation
in_tweldimensions and so, as before, we must have a relation of
tl}%t} pe
) U 4 iV == f(z),

A
" where I7 may be called the current function. The lines of flow

are given by U/ = constant, and among these are included the
boundaries of the sheet,

It is easily seen that the conditions arc similar to those of
two-dimensional flow of a fluid for which the complex potential
is if(z). Suppose, for instance, that thesheet is infinite in extent,
and that the lines of flow arg parallel straight lines. If now a
circular hole is made in the shect, the condltmm are exactly
like those of the flow of fluid past a circular cylinder, a case
which has been considered above (p. 122),
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Just as in hydrodynamices, conformal transformations may
he nsed to obtain further results from known solutions.

Conduction of Heat. Let heat flow steadily in two dimensions
parallel to the z-plane in material of uniform conductivity K.
if #is the temperature at the point 2, the flux of heat ab that
puint in the z-direction is — K¢, and the flux in the y-direction
s — K0, TFrom the fact that there is no net gain or loss of
hmf in a rectangle of sides dx, dy with one corner at the pomt
(@, y). it iz deduced that

RO\
GM + aw = ‘\'\ '
Consequently in the theory of heat-flow there occurk the
relation '\\
¢ + 10 = flz).

The lines of flow ¢ = constant are cut orthgonally by the
isothermals 6 == constant.

LixampLE 6, In Example I on p. 1]2 Jwe transformed the
semi-infinite strip of the w-plane, bounded by » = 0, u = ¢,
¥ == #;, into the upper haif of the #-plane by means of the

reiatmn
\g@’@éﬁlﬂ%@éﬁ@j orgn

Suppose that the strip d8\of uniform thermal conductivity
" and that the parallel edges BC and AC (Fig. 39) are kept at
zero temperature, whi Bis kept at a uniform temperature 7'.

fn the corresponding figure in the z-plane, we have § = T'
on AB and § =X%n AC and BC.

Hence é\f— 39 == (Pfr}log {(z — 1)}(z + 1}]
and so, 111 Q}e w-plane,
¢ +-. QH (Tf=)log {[eosh (zrwfr,} — 1]f[cosh (mwfe,) + 13}

<\3 ¥ = {2T}=) log tanh (mwef20,).
EXERCISES
L. If ¢ 4 4y = flz), show that 34/ 3s = dyfon and d¢/on . — dypf s,

whore ds and dn are the elements of the arc and inward normal of the
caurve O in Fig, 19, p, 6a.

2. Skatch the equlpotenum.ls andsstream lines when the complex
potentiad has the values 2—2, 6%, cos 2, 2h tan—1z,

3. Two infinitely long uniform circular cylinders, placed with their
axes parallel, attrach aceording to the Newtonian law. The gravitational
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potential T at a point outside both cylinders and at distancos », r from
their axes is given by
V == constani. — 2k log (rr).

where k is a consiant. Prove that the lin es of force oubside the cyvlinders
arc arcs of reetangular hyperbolas,

4. Tind the isothermals and lines of flow in the strip digcussed in
Example 6 on p. 125 and show that the resultant {lux of heat at the
point (w, ) is (4K 7'fv, )fcosh (2mifry) — cos (2mufu,), I\

5. Assuming that the pressure p and the velocity g satisfy Bernoulli's
equation {pfp) + Lg% = constant, show that, in liquid, of unifbem density
A which flows steadily, parallel to the z-plane, with comple) potential
e, the curves of constant pressure are the level eurves ©f bhe function
denfdz. 3

6. Prove that, if 4 + {y = fle + 490,

V:w + Vyy = If’ («"'J "i_ 'iy} |2 (V?‘&&-{-\, Jm;}'
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CHAPTER VIII

APPLICATION TO THE THEORY OF ALTERNATING
CURRENTS

Notation. Throughout this chapter, which is devoted to a
Lrief discussion of the application of the complex variable to
the theory of alternating currents, we shall conform to theh
customary notation of the electrical engineer by using“the
symbol ¢ to denote the current and § for 4/(— 1). A\
Harmonic Vecfors. Let a point P in the Argand. didgram
move with uniform angular speed w radians per &eeond in a
vircic of radins ¢ which has the Y
origin as centre (Fig. 43). If at zero
time the point is at P, on the real
axis, at time ¢ the angle P,OP
{known as the phase angle) is wf and ¢
the rotating vector represents, ab
the time {, the complex number, 2™
given by www_dbr"a{]lfibl'ary.or in
A = aexp (jot). 4

If & is the foot of tgh‘é})rdl‘nate
at P, the motion of'\¥.is defined Fie. 43
to be simple harmongognotion. Since
all the characterighics of the motion of N are determinate when
the vectior O_P\@ giverr, we call OP a harmonic veclor.

OP complefes a revolution, and therefore N completes an
oscillatiopyin time Zrfew, which is defined as the period. The
numberof revolutions of OP (or oscillations of N} per second
is defihed as the frequency and is wf2m.

‘Vector Representation of an Aliernating Current. An alter-
nating current is a periodic function of the time. The simplest
type of such a current is that given by

' t =t cos wi . . . (1)
where 4, is the maximum value of the current. A complete
cycle occurs in the period 27fw, and the frequency is wf2x
eycles per second. )

In practice, alternating currents may not always be given

127
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by expressions so simple as this, but since, by Fourier’s
theorem, a function J(£) which has a period Zmfe iy expressible
in the form
J(t) = Ja, + 3 (@, cos nwt — b, sin il ),
f- 1

where the a’s and b’s are constants, it is suflicient for our pur-
pose to consider a single term like iy €08 b, Newnlts ohiained
for this term will be similar to those obtained for %> other
term in the series; and for the majority of cireui{Hall these
results may be superposed to give the result ToaeNKEY A sine
terim, of course, is not essentially different from X cosine: for
We Inay write sin wf as cos (wt L Saf2}). SO

It will be noticed that equation (1) is ofexactly the same
form as that which gives the displaedfiient of the point N
considered on P. 127, viz,

ON = g cog w?*\
Just as the characteristics of thEgnotion of N may ho deduced
from the harmonic vector OPswhich represents 1, so we may
discuss the alternating curfent i by making use of a current
vector which represents @seomplex number I defined by the
relation www dbradlibrary.org.in

I = iy exp (joor).

The actual va,luq_"o}‘ the current at the instant is then given by

7

the real part N
On differgntiating with respect to £ we have
\&~ alfdt = joiy exp (juwt),
from swhich it is seen that differentiating with respect to £ is
equialent to multiplication by je,
“Impedance of an Inductive (oil. Suppose that the alter-

Jmating current ¢ ig produced in a coil of inductance % and
(O resistance B, where  and B are both constant and are expressed

in suitable physical units, Then, if » is the potential difference
between the ends of the coil at tirme ¢, the well-known equation
for the current in an inductive cireuit gives
v = fu 4 L{difdi)
= the real part of (B + JwL)i,

where » is expregsed in volts when ¢ is in amperes, B in ohms,
and L in henrys.
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Hence the potential difference v is the real part of a complex
number ¥, such that

V=@®+jell=d . . . @

whore # (= B 4 jwil) is a complex constant which is defined
to be the impedance of the coil. The imaginary part of the
inpedance is ol and is defined to be the reactance: the real
part of the impedance is seen to be the resistance £, \
Writing 2z in the form Z exp (j¢), we have A
{\

V = Zi, exp (jot 4 4y . . A\ &}

The voliage vector, which represents T, is therefore ,of Jength
Ziyand its phase is in advance of that of / by an aoutc angle ¢
such that tan ¢ = wLfR. Tt follows that the »olnagb vector is
ftyelf harmonic.

It wili be noticed that the voltage and LLerent vecbors are
in the same phase only when L vamshes,\ #: when the coil is
nen-inductive.

The reciprocal of the impedance is alled the admittance:
in this instance its value ia ™

S

(R + joL) = i L) (B? + 2L?).
www.d mu} rary.org.in
Impedance of a Condensers Let “a condenser of capaci-

tance O farads be inciudedMn a circuit in which alternating
current 7 is flowing. If gi%the quantity of electricity {(expressed
in coulombs) stored it the condenser and » is the potential
difference (in voltsfscross the plates at time ¢,

2NO” v = gfC and dgfdt = i.
Hence K723 dofdt = iJC
and so ’\:} ’ joV = IJ0,

O\

where V and I are the potential and current vectors.

W ahavt therefore
\ ) V == (— jloC) = I,
where, as before, z is the impedance, which for the condenser
is (— jfu(), a purely imaginary quantity.

Now since

arg (— jfal) = — mf2
arg V = arg I — =f2,

80 that the potential difference vector lags behind the current
veetor by a quarter of a period.
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Impedances in Series. Let a number of clements of i mpedance
%y, &, . - . %, be connected in series (Fig. 44). Then, with the
same notation as before, the potential difference is given by

v = the real part of (z,f + 2,0 -+ . . . + Zad ),
ie. Ve=izn+zm+... +z)l
The impedance of the system in series is thus the sum of the
separate impedances. . O\

z Z; Zn Impedances in Parafigl, Let
TV — e BAGAASASRE A S oP thegoutyents in
Fre. 44 then parallelsectiot of imped-
_ aNCe 24, 2y, . a2, ([fig. 45),
and let 1), I,, . . . I, be the corresponding,sutrent vectors.
Then if the potential difference vector iy J4 ™
Ve=ali=zl,=. . . =21 v

and Je=h L4 L, N
| 1 '\‘ ,
= [-z—l —+ 2—2 oL+ gRJV‘: [2(f=V.

The admittance of the ,‘s’fstem of parallel impedunces is

therefore the sum of theadmittances of the elements of the
wyw_db{'uﬂjibl'ar‘y_org_in
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,,\~§jf'stem. The impedance is the reciprocal of the admittance and

s equal to
(Z(1fz).

Exampre 1. To find the impedance of a condenser and a
coil in parallel (Fig. 46).

The impedance of the condenser is (1fjoC) and that of the
coll is R 4 jwL. The admittance of the two in parallel is
therefore

§oC + Y(R + joL) = (1 — 0*CL + joCR)(R + joL).
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On inverting this we have the impedance
(R + joL)f(1 — 0CL + joCR)
= [B + joll — wCL2 — CRY[(1 — o*CL}? 4+ ?C?R2.

The denominator of the expression has been made real hy the
nzual device of multiplying by the conjugate number. ’

Impedance of Parallel Wires. Let the ends B and D of
two equal parallel wires be connected and let an alternaging)
potential difference be maintained between the ends A ind C
(Fig. 47). \
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The circuit or  loop ** ha® four primary constants :

(i} The resistance R ol{ii® per unit length of the pair of wires.

(i} Bince insulators%@e’hever perfect, there is a certain amount
of leakage from wire,to wire. If the conductance of the path
of leakage betwen unit lengths of the two wires be ¢ mhos,
we may defing\the leakance to be & per unit length of loop,

(ii) The jnddctance L henries per unit length of loop.

(iv) Thé\edapacitance between wire and wire which we take
to be ¢/ farads per unit length of loop. o

Welshall suppose that, at time ¢, the current is flowing in
thiegense AB, DC. If P and P’ are points on 4B and C'D such
that' AP = OP’ — =, the strength of the cwrrent ¢ at P is
clearly equal to that at P’, in other words, the current ' at
the instant is a function of x only. As usual, we take I to be
the corresponding current vector. Take P = P'Q} = dx;
then each of the elements P, P'Q’ is of resistance LRdzx,
mnductance §Léz, and impedance }{E + joL)dx. )

Suppose that the potential difference between P and Pt is
v, then that between @ and @' is v + dv; the corresponding
vectors are V and ¥ - &),
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Now if £, denotes the potential at P,

E,— B, =
and E,— E, =2 4 v,
whence E, K, +E,— B, =—d. . . . {4}

But each of the potentml differences (E, — E ), (&, — E.,.)
is the real part of {R + jwL)dz./, and g0 we have, irom\{4)

— v = the real part of (B - f- jowL)og K

Therefore — 8V = (R + joLYxI, )
which gives, after dividing by — 8z and makmu'ng tend o
Zero, N

dVjde = — (R + joL). 0" . .3

Now the flow between P{) and P'Q’ is thap due to a condenscr
of capacity Cdz and a conductance\d(}ém in parallel. The
resultant conductance iz

G'ér + 3‘(&’0}2:

and the current shunted between the wires is therefore the
real part of

www.d br(a L{?ﬁbﬂ;},%” cg (ngl)nv

Since the loss of qurfent in the section is the real part of
— o7, it follows that\

A O = — (G + jul)oz.V
and that }r/dx —— (@O . ... (8
Diﬁ'erep’e@tmg {8) with respect to = and using (6), we get
,j\’w‘ AV fda? = — (R + julL) (dfdx)

O = (R + jol) (G 4 juC)V . (T
Tn a gimilar way it may be shown that
\ &ifde® = (R + jolL) (G 4+ juthI . . . (8)

\ )™ 8o that V and 7 satisfy the same differential equation
dPyfdx® = by,
where = (B + jol) (@ + jol). . )
The most general value of ¥ which satisfies (7} is given by
V = exp (kx) + b exp (— ka)
= (& + ) cosh kx + (@ — b) sinh k=,

where  and b may be determined from the end conditions. In
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this esze e and b, although independent of x, are functions of 4.
If the potential difference between 4 and € at the instant is
r, cos wé, then the conditiens which determine @ and & are that
V== V, = y,exp (jot) when x = 0
arul V == 0 when & = 48 = I, say.
Thus @ + b= V, and (a - ) cosh K + (o — b) sinh &l == 0, ~_
from which

¥V = ¥, cosh kx — ¥, coth ki sinh k R ‘:\
= V, cosech Ll ginh (& — kx). . . TR .:~~?10)
The value of 7 may now be obtained from (3), apc}jswz
I = — DR + joL]dV/d) Q-
== [{@ + jwCY(R + jeL)]} cosech ffc\{ﬁh (K — kx).
EXERCISES (Y

1. An inductive eoil is of Tesistance I shmghnd inductance L henries;
a non-inductive coil is of resistance r whms; and a condenser is of
capacitance (' farads. Show that t-he.it;’%ipedance of

{i} the first coil and therenebrutgTipaperiss 6in
B [ifCL — Dfw(];
(i1} the second coil and t-he;‘condensor in parallel is
RQECCRN (L + w*Ct?);
{lii}) the two coils imparallel is
(MR (R L) + Jolrlf (B + 1 — w171 |
Also, find t-he\é.dmitt-ance of each of the above in the form 4 + iB.

2. Bhow thé-t, if I, and ¥, are the current and potential differ-

ence veetdrha bt the ends 4, ¢ of the parallel wires {p. 131) and
Zy = (B{NJo LG + jul), - -
RN V 2= ¥,y eosh kr — 1,Z, sinh ka
and — 1, cosh k& — {VoZ,) sinh k.
\If the length of the loop is made infinite, show that
. V = Vyexp {— ka)and I = (Vy/Z,) exp (- k).
3. If the ends B, D of the parallel wires are not connected, show that
¥ = V,sech ki cosh (ki — k)
and { = {Vy}Z,} sech Kl sinh (K — k).
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APPENDIX

SUGGESTIONS FOR FURTHER READING

THE literature of the subject is so vast that some suggestionssas to
further reading (in English) may be helpful. ) '

The subjects Introdnced in the fitst three chapters of Lhighosk ase
treated in Hardy's Course of Pure Mathemalics, the whelePaphizh iy
indizpensable to the intending mathematical specialist ; ;.i}!. Hobson's
Plane Trigonomelry; and in Bromwich’s Theory of In’ﬁ.?iiie Serips.

In connection with Chapters IV-VI, the reader way gonsult Titch-
marsh’s Theory of Functions, Harkness and Morl ew’s{[ ntraduction io ihe
Theory of Analytic Funclions, Whitaker and Watw\s Modern Analysis
tespecially Chapters ¥ and V1), and Carathéudory’s Conformal ftepre-
sentation. TForsyth's Theory of Functions of Complexr Varielle is an
exhaustive troatise on the whole subject, /AW

Full details of the applications to mathertatical physics will be found |
in the gpecial treatises such as Jeang’ Biectricity and Magnelism, [ivens'
Fheory of Llectricily, Lamb's & ydrodyaamics, Milne-"Thomson's Thearali-
cal Hydrodynamics and Carslaw’s Methematical Theory of The Conduction
of Heal. An flluminating aceoulith of applications bo thesa, as well as
other subjects, is to be found in Bateman's Partial Diifferential Eguntions
of Muihematical Phywing.dbradlibrary org.in

The engineering student “Wwill find plenty o inberest him in the
Theory of Funclions qfh tpplied (o Engineering Problems bv Rothe,

gilseu {English translation published by the
Techuology Press{ i\*f\a.ss-a,chusett-s Institufe of Technology), Interesting
applicalions to ayi%uaut-ics are given in Glavert’s derofeil and Airscrew
Theory. Miles Walker's Conjugele Functions for Engineers deals with
applicationy, ©f; the Schwarz-Christoffe] transformation to potentisi
problems Such as are of importance to Ghe electrical engineer. The
symbelicftheory of allernating carrents is given in Clayton's Alernating
Currepds Jond in Telephone and Power Transmission by Bradfield and
J'ohp\ e latter book containg many fully-worked numerical axamples.
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ADMITTANCE, |29
Aerofcil, 41, 94

Afiix, 6

Alternating current, 127
Armplitade, §

Analytic function, §3
Argand diagram, 5
Argumont, 6

Bruskar transformation, 84

Cavony’s theorem, 66
Circilur functions, 32
—-— -, generalized, 37
Cooaxal vircles, 14
Complex numbor, 4
—-— polential 121

- wariable, 47
Candenser, 129
Conduetion of heat, 125
Conformal trausforumtmn 79, 122
Conjugate functions, 50
~——- nummbera, 5
~— Toota, 21
Cantonr, 65

—-— integration, 74
Convergence, 30
Cross-ratio, 86
Current. ﬂou, JZt'
Curvilinear mtegm 64
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DovsLe ?oﬁ’r}s, 87

4 n\’ *
EurgigosTsTics, 124
iabions, roots of, 20
t.h(,nn of, 20}
Equlputpntmls, 121
Exponential series, 31

Facrons, 29, i3, 34

Tonetion of a coinplex variable, 48
hnlomorphw, 63

— -, manogenie, 50

s Fational, 67

GREEN3 theorom, 119

EX

HynRonYNAMICS, 91, 120
Hyperbolic functions, 37
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IMAGINARY number, unit, 2 ¢\
Impedance, 128 *
of paraellel wires, 131
Impedaness in parallel, 130 \
, In series, 130
Infinite series, 30.
Inversion, 82

Isothermals, 124
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LAPLACE'S eqxuiwﬁn 5l
inpolars, 56
Lanrent. HOT .72
Laurenfis thporem, Td
Lovel curves 58
Loganthma 35
Laxodrome, 104
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b Mapping of a sphers, 01

oNpIoN, 8

Mercutor's projection, 104
Modulus, §
de Maoivre’s theorer, 22

ORDINARY point, T

PARABOLIC transformation, 87
Path of integration, 65

Point at infinity, B4

Tole, 63

Polynomial, zero of, 20
Potential function, 118

s cormaplex, 121

FPrincipel argument, 6

BEecrrrocar transformation, 84
Rogular funedivn, 63

Tesidue, §%, T4

Rhummb line, 164

Roote of unity, 24

of any number, 25

Scawarz-CARGTOFFEL  transforma-
tion, 112

Self-corresponding points, 87

Singularity, 63

——, accidental, 63

, essential, T4
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Stereographic projectiom, 104 { TA¥LOR sories, 71
Btokes’ theorem, 835 Taylor's theorer, 74
Stream funetion, line, 121

Successive transformation, 9%

Summation of series, §4 VecTor, 2

Surface of raoduli, 61 . harmonie, 127
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